JASM-6200 Scanning Electron Microscope ClairScope from Jeol

Design Principle

ClairScope™ consists of an atmospheric scanning electron microscope (ASEM) and an optical microscope positioned on top. The ASEM is isolated from the SEM with a thin film installed at the top end of the inverted SEM. The thin film, designed to transmit an electron beam while blocking air, separates the sample in atmosphere from the vacuum in the SEM. The electron beam is projected from below to the sample placed on the thin film for high resolution imaging of the sample in atmosphere. The same area of view of the sample can also be imaged in the optical microscope on top. The thin film is configured in a dish (thin film dish), which can be used for cell culture in a culture chamber.


SEM imaging in complete atmospheric pressure

The sample is held in complete atmospheric pressure, enabling dynamic observation of physical and chemical reactions in liquids and gases. Lengthy preliminary treatment of biological samples, including dehydration and drying, is no longer necessary, resulting in high throughput imaging. The microscope, without the limitations of vacuum atmosphere, will broaden the range of applications.

Imaging of the same area of view as optical microscope

The top of the thin film is open, joined to the optical microscope. The optical microscope being aligned with the ASEM, the operator can image the same area of view alternately between both microscopes.

The optical microscope can accommodate up to 6 mirror units simultaneously. Standard mirror units for bright field imaging and ultraviolet irradiation, combined with optional mirror units, can acquire various types of fluorescent images.

Open specimen chamber

The specimen chamber is open, allowing the operator to externally control reagents (chemical administration).For example, the operator can load the thin film dish onto the system, and observe the sample in the ASEM after administering a chemical to the sample. The operator can also monitor physical and chemical developments as the sample changes its volume.

Biological applications

Extended applications of optical microscope

Many biologists routinely use optical microscopes for their research. However, optical microscopy is unable to achieve resolution higher than 0.2 um due to its wavelength limitations. While scanning electron microscopy (SEM) and transmission electron microscopy (TEM) feature higher resolution, many samples require a lengthy preliminary treatment process including multiple dehydration and drying process steps, which usually takes a skilled technician one to a few days to complete. This is why SEM and TEM, despite their high resolution, are not as widely used as optical microscopy.
ClairScope™ is designed to observe samples in atmospheric pressure using the ASEM. It is capable of high resolution imaging of biological samples without the preliminary dehydration/drying process that requires skilled technician. Sample pre-treatment consists of simple steps of chemical administration, taking only about 10 minutes. This enhances the efficiency and yield of sample imaging.

ClairScope™ also supports imaging of the same area of view in the optical microscope on top and the ASEM at the bottom. This allows optical microscope users to first observe images they are familiar with, and proceed to high resolution imaging of a given spot of the sample. The system allows the operator to identify tissues and local existence of protein using fluorescence staining and optical microscopy, and to further study the corresponding spots using high resolution imaging of the ASEM.

ClairScope™ also allows the operator to observe live cells in the optical microscope, restrict the motion with chemicals, and apply fixation/staining as needed for high resolution imaging in the ASEM. Cells are cultured on the thin film dish in the same way as any conventional plastic dish. The researcher can culture cells in the usual procedure, observe the cells in the optical microscope, and focus on areas of interests in the ASEM for further imaging.

ClairScope™ is expected to be widely used in a variety of fields including basic biology, medicine, pharmaceutical, and cosmetics.

Visit Website