New compound, ZK-CDK combines the inhibition of tumour cell growth as well as inhibition of tumour angiogenesis in one single molecule

NewsGuard 100/100 Score

Treatment with a new dual cell cycle and angiogenesis pathway inhibitor blocks VEGF-induced vascular permeability, inhibits tumour angiogenesis and induces apoptosis in human tumour models said Dr. Gerhard Siemeister of Schering AG, Corporate Research, Berlin speaking at the 18th meeting of the European Association of Cancer Research.

Loss of cell cycle control (runaway growth) and tumour-induced angiogenesis (development of new blood vessels to supply the growing tumour with oxygen) are two major hallmarks of cancer. Loss of cell cycle control as a consequence of aberrant cyclin-dependent kinase (CDK) control has been directly linked to the molecular pathology of cancer. CDK's are a family of enzymes required for the correct timing and order of events in the cell division cycle. Vascular endothelial growth factor (VEGF) / VEGF-receptor tyrosine kinase (VEGF-RTK) and platelet-derived growth factor (PDGF)-RTKs are two molecules known to be involved in tumour angiogenesis.

The new compound, called 'ZK-CDK', is a novel, chemically synthesized small molecule ATP-competitive kinase inhibitor that is unique in that combines the inhibition of tumour cell growth as well as inhibition of tumour angiogenesis in one single molecule.

ZK-CDK was shown to inhibit a range of CDK's as well as VEGF-RTK's and PDGF-RTK's resulting in an inhibition of the proliferation of human tumour cell lines in vivo. ZK-CDK blocked cell cycle progression in G1 and induced apoptosis, blocked VEGF-induced vascular permeability in vivo and reduced the blood supply of human tumour xenografts. "These animal data are very promising in terms of anti-tumour efficacy and tolerability", said Dr. Siemeister. "VEGF-RTK inhibitors have been shown to be well-tolerated by patients and we hope that ZK-CDK will be well tolerated. The CDK inhibiting mechanism of ZK-CDK, in contrast to cytotoxic chemotherapy, should arrest the proliferation of normal cells but not kill them, allowing them to recover during drug-free cycles".

ZK-CDK was tested on mice as an oral preparation. The compound was tested against several tumour models including both solid tumours and haematological tumours. The compound showed efficacy in all models. However, ZK-CDK was particularly efficacious in slow-growing, hormone-independent, p53-negative models e.g. advanced, anti-hormone refractory breast and prostate tumours.

"This new compound is highly efficacious at inhibiting tumour growth and works by acting on two separate mechanisms that are involved in the development and perpetuation of human cancer cells", said Dr. Siemeister. The compound has already entered phase I clinical trials to determine tolerability and pharmacokinetics in humans and to establish its efficacy in humans".

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Triple-negative breast cancer patients with high immune cell levels have lower relapse risk after surgery