Bcl-3 protein regulates inflammation by blocking ubiquitination

NewsGuard 100/100 Score

Researchers at the University of Pennsylvania School of Medicine recently identified how a regulatory protein called Bcl-3 helps to control the body's inflammation response to infection by interfering a critical biochemical process called ubiquitination.

While previous studies suggested Bcl-3 plays a role in immunity, this is the first report that Bcl-3 regulates inflammation by blocking ubiquitination.

Their findings, published in Science, open new avenues of exploration for developing therapies to treat infectious or inflammatory diseases, such as sepsis, diabetes, and rheumatoid arthritis.

“The novelty of our study is the discovery that Bcl-3 acting on gene expression has a profound effect on inflammation,” says Ruaidhri Carmody, PhD, Senior Research Investigator in the Department of Pathology and Laboratory Medicine and first author of the Science paper. “By mimicking Bcl-3 activity, we may be able to create an artificial way to block the inflammatory response.”

In the laboratory of senior author Youhai Chen, PhD, Associate Professor of Pathology and Laboratory Medicine, Carmody and others searched for clues as to how Bcl-3 controls inflammation by examining how Bcl-3-deficient mouse cells respond to infection. Their studies revealed that Bcl-3 interacts with p50, a protein that inhibits gene transcription by binding to DNA.

“p50 turns off the DNA region coding for inflammation, halting the response to infection,” explains Chen. Without Bcl-3, Chen says p50 cannot stop the inflammation response, but instead will become degraded very fast, through ubiquintination.

Ubiquitination is an intracellular system of checks and balances, where cellular proteins are flagged for disposal. During exposure to infection, Bcl-3 appears to overrule the p50 ubiquitination, stabilizing the presence of p50 on DNA and halting inflammation.

“Our study identifies another layer of information that controls the inflammatory response,” says Chen. “Bcl-3 appears to take in information from the body and, in response to infection, interferes with p50 degradation to decrease inflammatory response.”

“Inflammation is natural,” says Chen. “If we didn't respond to infectious agents, bacteria would kill us. However, the inflammatory response must be controlled or we could also die. Bcl-3 helps regulate inflammation.”

“By using what we now know about Bcl-3 regulatory function, we hope to create new ways to control inflammation for therapeutic purposes with selective anti-inflammatory agents,” says Carmody.

Although drugs to suppress inflammation currently exist, Chen and Carmody say they cause many undesirable side effects in patients with inflammatory diseases.

“Current drug treatments target inflammation signaling pathways. When you inhibit entire pathways, you can produce negative side effects,” said Carmody. “Since Bcl-3 acts on specific genes, we should be able to target a subset of dangerous regulatory genes without disrupting other important immune responses.” Such drugs could benefit patients with chronic inflammation and transplant recipients as well as those suffering with inflammatory diseases.

In the future, the scientists aim to determine the components of the cell responsible for flagging p50 for destruction and instructing Bcl-3 to perform its vital function.

Penn co-authors are Qingguo Ruan, Scott Palmer, and Brendan Hilliard. This research was funded by the National Institute of Allergy and Infectious Disease.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study unveils protein signatures for early detection of endometrial cancer in cervico-vaginal fluid