University of Leicester scientists identify unique forms of spinal nerve activity

Published on November 9, 2012 at 4:58 AM · No Comments

Scientists from the University of Leicester have hit upon unique forms of spinal nerve activity that shape output of nerve cell networks controlling motor behaviours.

The breakthrough in the Department of Biology at the University of Leicester is announced today in the journal Current Biology. The three- year study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Although the neural basis of motor control has been studied for over a century, the processes controlling maturation of locomotor behaviours - like walking and swimming - are not fully understood.

The University of Leicester research into nerve cells responsible for motor behaviours was carried out on fish. The team aimed to understand how spinal networks produce rhythmic activity from a very immature stage - and how such activity changes during maturation.

The team used zebrafish, a freshwater fish native to northern India and Bangladesh, because their motor networks are similar to humans. However, as they are fertilized outside the mother and their embryos are transparent, scientists can readily monitor motor network development from its onset - something that is very difficult to do in mammals.

Lecturer in Neurobiology, Dr Jonathan McDearmid, who led the research, said: "What's unique about our work is the observation that a group of spinal nerve cells generate unusual forms of electrical activity that adapt to meet the changing requirements of the developing motor network. Whilst these cells had been previously identified, their excitable properties had not been studied in detail. We found that these cells produce age-specific activity patterns: in early life they have "autorhythmic" properties that are likely to drive embryonic movements. However, as fish develop towards more mature swimming stages, they switch firing activity to generate sustained impulses that appear to be necessary for maintenance of swimming.

"Our work is important because it sheds light on the mechanisms by which spinal nerve cells shape activity in the maturing of motor network. This is basic research that allows us to better understand how vertebrate motor activity emerges. However, in the long term, understanding of this process might help determine what goes wrong in diseases that affect spinal cord function."

Dr McDearmid said the identification of the activity generated by this group of cells -termed IC cells- happened as quite a surprise:

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post