Exploring brain synchronizations to understand the neural processes behind social behaviors

NewsGuard 100/100 Score

We experience the world and connect with others through social interactions. Engaging in activities, such as conversations, cooperative tasks, and intimate relationships, deeply affect brain activity leading to coordinated neural activity within an individual's brain (intra-brain synchronization) and between the brains of multiple individuals (inter-brain synchronization).

Researchers study brain synchronizations to understand the neural processes behind social behaviors. This knowledge can help diagnose and treat conditions like social anxiety and communication-related disorders. However, investigations on brain synchronization have primarily focused on groups with strong social ties, such as romantic couples and parents and children.

In a study published in Scientific Reports on February 29, 2024, researchers from Waseda University in Japan reveal that cooperative interactive tasks between individuals with weak social ties result in more synchronized brain activity compared to individuals with strong ties.

Our findings challenge the conventional understanding that stronger social ties predict greater brain synchronization and offer fresh insights into neural networking during social interactions."

Dr. Yuto Kurihara, lead researcher, Research Associate at the Faculty of Human Sciences at Waseda University

The research team also included Dr. Toru Takahashi from the Advanced Research Center for Human Sciences and Professor Rieko Osu from the Faculty of Human Sciences at Waseda University.

They studied 14 pairs of strangers who met for the first time and 13 acquaintance pairs, in which one participant brought their partner. Due to artifacts, 21 pairs were included in the analysis (stranger pairs: 11, acquaintance pairs: 10). The participants were given a joint tapping task, where they had to tap a mouse button in opposite rhythms. Each participant wore earphones to hear both their taps and their partner's taps, and they had to anticipate their partner's movements.

Brain activity was captured using electroencephalograph (EEG) electrodes placed on their scalp for four tapping conditions: slow tapping with a 0.5-second interval, fast tapping with a 0.25-second interval, tapping freely at their preferred frequency, and tapping coordinated with a metronome at 0.50-second intervals (a pseudo condition). The study investigated how brain signals synchronize across the theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) frequency bands.

EEG analysis revealed that pairs of strangers exhibited greater intra-brain synchronization in the theta band, compared to acquainted pairs. Furthermore, binary undirected graphs constructed to represent the connectivity between EEG channels showed that the neural network was more densely connected in strangers than in acquaintances.

"Surprisingly, despite having weaker social ties, stranger pairs demonstrated more robust intra- and inter-brain EEG networks than acquainted pairs," comments Dr. Kurihara.

Researchers suggest that the lack of familiarity between strangers requires a more involved process for predicting each other's actions or behaviors in a cooperative task. Consequently, this heightened engagement leads to a more efficient transfer of information between closely connected nodes within the neural network.

This finding underscores the importance of weak social ties in shaping social relationships and individual behavior. "By demonstrating that strangers exhibit heightened intra- and inter-brain synchronization, our research highlights the potential of weak ties in fostering new connections and understanding the neural underpinnings of social interactions," says Dr. Kurihara.

Source:
Journal reference:

Kurihara, Y., et al. (2024). The topology of interpersonal neural network in weak social ties. Scientific Reports. doi.org/10.1038/s41598-024-55495-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Quantum biology's new frontier: Tryptophan networks and brain disease defense