Single Gene Genetic Disorder

Prevalence of some single gene disorders
Autosomal dominant
Familial hypercholesterolemia1 in 500
Polycystic kidney disease1 in 1250
Huntington disease1 in 2,500
Hereditary spherocytosis1 in 5,000
Marfan syndrome1 in 20,000
Autosomal recessive
Sickle cell anemia1 in 625
(African Americans)
Cystic fibrosis1 in 2,000
Tay-Sachs disease1 in 3,000
(American Jews)
Phenylketonuria1 in 12,000
Mucopolysaccharidoses1 in 25,000
Glycogen storage diseases1 in 50,000
Galactosemia1 in 57,000
Duchenne muscular dystrophy1 in 7,000
Hemophilia1 in 10,000
Values are for liveborn infants

A single gene disorder is the result of a single mutated gene. There are estimated to be over 4000 human diseases caused by single gene defects. Single gene disorders can be passed on to subsequent generations in several ways. Genomic imprinting and uniparental disomy, however, may affect inheritance patterns. The divisions between recessive and dominant types are not "hard and fast" although the divisions between autosomal and X-linked types are (since the latter types are distinguished purely based on the chromosomal location of the gene). For example, achondroplasia is typically considered a dominant disorder, but children with two genes for achondroplasia have a severe skeletal disorder that achondroplasics could be viewed as carriers of. Sickle-cell anemia is also considered a recessive condition, but heterozygous carriers have increased immunity to malaria in early childhood, which could be described as a related dominant condition.

Autosomal dominant

Only one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent. There is a 50% chance that a child will inherit the mutated gene. Conditions that are autosomal dominant often have low penetrance, which means that although only one mutated copy is needed, a relatively small proportion of those who inherit that mutation go on to develop the disease. Examples of this type of disorder are Huntington's disease, Neurofibromatosis 1, Marfan Syndrome, Hereditary nonpolyposis colorectal cancer, and Hereditary multiple exostoses, which is a highly penetrant autosomal dominant disorder. Birth defects are also called congenital anomalies.

Autosomal recessive

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene (and are referred to as carriers). Two unaffected people who each carry one copy of the mutated gene have a 25% chance with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are cystic fibrosis, sickle-cell disease (also partial sickle-cell disease), Tay-Sachs disease, Niemann-Pick disease, spinal muscular atrophy, and Dry (otherwise known as "rice-brand") earwax.

X-linked dominant

X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritance pattern, with a prime example being X-linked hypophosphatemic rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some X-linked dominant conditions such as Rett syndrome, Incontinentia Pigmenti type 2 and Aicardi Syndrome are usually fatal in males either in utero or shortly after birth, and are therefore predominantly seen in females. Exceptions to this finding are extremely rare cases in which boys with Klinefelter Syndrome (47,XXY) also inherit an X-linked dominant condition and exhibit symptoms more similar to those of a female in terms of disease severity. The chance of passing on an X-linked dominant disorder differs between men and women. The sons of a man with an X-linked dominant disorder will all be unaffected (since they receive their father's Y chromosome), and his daughters will all inherit the condition. A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus with each pregnancy, although it should be noted that in cases such as Incontinentia Pigmenti only female offspring are generally viable. In addition, although these conditions do not alter fertility per se, individuals with Rett syndrome or Aicardi syndrome rarely reproduce.

X-linked recessive

X-linked recessive disorders are also caused by mutations in genes on the X chromosome. Males are more frequently affected than females, and the chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected, and his daughters will carry one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who carry one copy of the mutated gene and are therefore carriers. Examples of this type of disorder are Hemophilia A, Duchenne muscular dystrophy, red-green color blindness, Muscular dystrophy and Androgenetic alopecia.


Y-linked disorders are caused by mutations on the Y chromosome. Because males inherit a Y chromosome from their fathers, ''every'' son of an affected father will be affected. Because females inherit an X chromosome from their fathers, female offspring of affected fathers are ''never'' affected.

Since the Y chromosome is relatively small and contains very few genes, there are relatively few Y-linked disorders. Often the symptoms include infertility, which may be circumvented with the help of some fertility treatments. Examples are Male Infertility and hypertrichosis pinnae.


This type of inheritance, also known as maternal inheritance, applies to genes in mitochondrial DNA. Because only egg cells contribute mitochondria to the developing embryo, only females can pass on mitochondrial conditions to their children. An example of this type of disorder is Leber's Hereditary Optic Neuropathy.

Further Reading

This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "Genetic disorder" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Feb 1, 2011

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | العربية | Dansk | Nederlands | Finnish | Ελληνικά | עִבְרִית | हिन्दी | Bahasa | Norsk | Русский | Svenska | Magyar | Polski | Română | Türkçe
  1. John Canfield John Canfield United States says:

    If even one mutation in genes can be responsible for over 4k separate disorders, how would it be possible for the human or proto-human to accumulate genetic material for the inheritance of new organic structures?

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment