Quantum Dot Optical Properties

The optical properties of quantum dots are known to vary between different types and can be predicted by certain factors.

The material that the quantum dot is constructed from plays a role in determining the intrinsic energy signature of the particle, but the most important factor that affects the optical properties is the size of the dots. Different sized quantum dots change the color emitted or absorbed by the crystal, due to the energy levels within the crystal.

Energy Levels on Fluorescence Spectrum

In the fluorescence spectrum, the color of the light differs according to the energy emitted by the crystal. Red light is associated with lower energy and blue light with higher energy.

The band gap energy of a quantum dot is the difference in energy level between the dot’s excited energy state and its resting state. The quantum dot can absorb fluorescent light at the frequency of its band gap to become excited, or emit the same frequency of light to return to its resting state.

Effect of Size

The size of a quantum dot is inversely proportional to the band gap energy level, and therefore alters the frequency light emitted and has an effect on the color. Smaller dots emit higher energy light that is bluer in color, whereas larger dots emit lower energy red light.

It is also possible for larger quantum dots to posses several energy levels that are more closely aligned. This allows for the absorption of photons with different frequency levels, such as those on the red end of the light spectrum. Additionally, due to these additional energy levels electron-hole pairs can become trapped inside larger quantum dots. Over the long term, this causes larger quantum dots to have a longer lifespan that that of small quantum dots.

Effect of Shape

Recent research has also suggested that the shape of quantum dots may play a role in the band level energy of the dots and, as a result, affect the frequency of fluorescent light emitted or absorbed.

However, there is insufficient evidence to support this hypothesis and the currently available information does not aid the construction of quantum dots to optimize their shape for specific optical properties.

Effect of Structure

The crystal lattice of the quantum dot semiconductor has an effect of the electronic wave function. As a result, a quantum dot has a specific energy spectrum equal to the band gap and a specific density of electronic state on the outside of the crystal.

Quantum dots can also be synthesized with a protective shell to lengthen its lifespan and increase frequency of fluorescent emission. For example a quantum dot composed of cadmium selenide may have a thicker protective shell made of cadmium sulfide.

Optimizing Optical Properties for Imaging

The most important aspect of the quantum dot that affects the optical properties it displays is its size. The size of the dot can be manipulated in manufacturing processes to create a quantum dot suitable for the purposes of optical imaging.

The shape and structure of the quantum dot should also be considered, as well as the material used in the construction process. However, as the size has a direct effect on the optical properties and the frequency of fluorescent light emitted or absorbed by the crystal, it should be given appropriate consideration.

References

Further Reading

Last Updated: Aug 23, 2018

Yolanda Smith

Written by

Yolanda Smith

Yolanda graduated with a Bachelor of Pharmacy at the University of South Australia and has experience working in both Australia and Italy. She is passionate about how medicine, diet and lifestyle affect our health and enjoys helping people understand this. In her spare time she loves to explore the world and learn about new cultures and languages.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Smith, Yolanda. (2018, August 23). Quantum Dot Optical Properties. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/life-sciences/Quantum-Dot-Optical-Properties.aspx.

  • MLA

    Smith, Yolanda. "Quantum Dot Optical Properties". News-Medical. 31 October 2024. <https://www.news-medical.net/life-sciences/Quantum-Dot-Optical-Properties.aspx>.

  • Chicago

    Smith, Yolanda. "Quantum Dot Optical Properties". News-Medical. https://www.news-medical.net/life-sciences/Quantum-Dot-Optical-Properties.aspx. (accessed October 31, 2024).

  • Harvard

    Smith, Yolanda. 2018. Quantum Dot Optical Properties. News-Medical, viewed 31 October 2024, https://www.news-medical.net/life-sciences/Quantum-Dot-Optical-Properties.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.