Lead Poisoning Pathophysiology

Lead circulates in the body bound to red blood cells. O nly a small fraction is present in the plasma. However, if the level of lead in the blood exceeds 2.9 µmol/L, red cell binding becomes saturated, meaning the fraction of lead in plasma begins to increase. Lead in the plasma gradually gets distributed to various organs and tissues. B ecause the process is slow, it usually takes long-term exposure over months or years before clinical toxicity occurs.

More than 90% of lead is stored in the bones, where it can remain for decades serving as an ongoing source of lead to tissues, long after a person is no longer exposed to lead or after they have received chelation therapy.

The clinical toxicity eventually observed as a result of lead poisoning occurs due to lead distribution to target tissues, especially the nervous system, bone marrow and kidneys. Lead poisoning results in various different health problems including hypertension, coronary artery disease, peripheral artery disease and stroke, although the underlying mechanisms involved are not fully understood.

Lead is highly toxic to the proximal renal tubules, which can lead to a condition called Fanconi syndrome. This is a disorder where substances that would normally be absorbed into the bloodstream such as amino acids, phosphate and glucose are instead released into the urine.

The exact pathophysiologic mechanism of lead poisoning is not yet clear, but it is known that lead competes with other minerals in cellular systems, especially calcium and zinc. It therefore disrupts several cellular processes that depend on these minerals. Examples include:

  1. In vitro, lead inhibits calcium uptake and disrupts mitochondrial function.
  2. At the presynaptic nerve terminal, lead interferes with neurotransmitter functions that requires calcium.
  3. Lead inhibits the calcium-dependent protein kinase C, which is essential to brain function
  4. Two major enzymes involved in heme synthesis are inhibited by lead as it competes with zinc, possibly leading to a wide variety of effects on the different processes that depend on heme.

Lead poisoning has more damaging effects on children than it does on adults because children absorb five times more lead when exposed than adults do. The lead can also cause serious neurodevelopmental problems in children due its damaging effects on growing nerve cells and the developing brain. In children exposed to lead from birth onward, the level of lead in the blood peaks at around 18 to 24 months, which is a key period in terms of neurological development, when children are rapidly acquiring various different skills. Synapse formation between nerve cells (synaptogenesis) is also rapid during this period and some studies have indicated that inhibition of this process is one of the main pathological mechanisms that leads to nervous system injury in children.

Further Reading

Last Updated: Feb 26, 2019

Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2019, February 26). Lead Poisoning Pathophysiology. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/health/Lead-Poisoning-Pathophysiology.aspx.

  • MLA

    Robertson, Sally. "Lead Poisoning Pathophysiology". News-Medical. 31 October 2024. <https://www.news-medical.net/health/Lead-Poisoning-Pathophysiology.aspx>.

  • Chicago

    Robertson, Sally. "Lead Poisoning Pathophysiology". News-Medical. https://www.news-medical.net/health/Lead-Poisoning-Pathophysiology.aspx. (accessed October 31, 2024).

  • Harvard

    Robertson, Sally. 2019. Lead Poisoning Pathophysiology. News-Medical, viewed 31 October 2024, https://www.news-medical.net/health/Lead-Poisoning-Pathophysiology.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.