Lipitor (Atorvastatin) Pharmacokinetics

Atorvastatin has rapid oral absorption with an approximate time to maximum plasma concentration (Tmax) of 1–2 hours. The absolute bioavailability of atorvastatin is approximately 14%, however, the systemic availability for HMG-CoA reductase activity is approximately 30%. Atorvastatin undergoes high intestinal clearance and first-pass metabolism, which is the main cause for the low systemic availability. Food has been shown to reduce the rate and extent of atorvastatin absorption. Administration of atorvastatin with food produces a 25% reduction in Cmax (rate of absorption) and a 9% reduction in AUC (extent of absorption). However, food does not affect the plasma LDL-C lowering efficacy of atorvastatin. Evening atorvastatin dose administration is known to reduce the Cmax (rate of absorption) and AUC (extent of absorption) by 30% each. However, time of administration does not affect the plasma LDL-C lowering efficacy of atorvastatin.

Atorvastatin is highly protein bound (≥98%).

The primary proposed mechanism of atorvastatin metabolism is through cytochrome P450 3A4 hydroxylation to form active ortho- and parahydroxylated metabolites, as well as various beta-oxidation metabolites. The ortho- and parahydroxylated metabolites are responsible for 70% of systemic HMG-CoA reductase activity. The ortho-hydroxy metabolite undergoes further metabolism via glucuronidation. As a substrate for the CYP3A4 isozyme it has shown susceptibility to inhibitors and inducers of CYP 3A4 to produce increased or decreased plasma concentrations, respectively. This interaction was tested in vitro with concurrent administration of erythromycin, a known CYP 3A4 isozyme inhibitor, which resulted in increased plasma concentrations of atorvastatin. Atorvastatin is also an inhibitor of cytochrome 3A4.

It is primarily eliminated via hepatic biliary excretion with less than 2% of atorvastatin recovered in the urine. Bile elimination follows hepatic and/or extra-hepatic metabolism. There does not appear to be any entero-hepatic recirculation. Atorvastatin has an approximate elimination half-life of 14 hours. Noteworthy, the HMG-CoA reductase inhibitory activity appears to have a half-life of 20–30 hours, which is thought to be due to the active metabolites. Atorvastatin is also a substrate of the intestinal P-glycoprotein efflux transporter, which pumps the drug back into the intestinal lumen during drug absorption.

In Hepatic insufficiency, Plasma drug concentrations are significantly affected by concurrent liver disease. Patients with A stage liver disease show a 4-fold increase in both Cmax and AUC. Patients with B stage liver disease show an 16-fold increase in Cmax and an 11-fold increase in AUC.

In Geriatric patients (>65 years old) show altered pharmacokinetics of atorvastatin compared to young adults. The mean AUC and Cmax values are higher (40% and 30%, respectively) for geriatric patients. Additionally, healthy elderly patients show a greater pharmacodynamic response to atorvastatin at any dose, therefore, this population may have lower effective doses.

Further Reading


This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "Atorvastatin" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Feb 1, 2011

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | العربية | Dansk | Nederlands | Finnish | Ελληνικά | עִבְרִית | हिन्दी | Bahasa | Norsk | Русский | Svenska | Magyar | Polski | Română | Türkçe
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post