Lipoprotein Metabolism

The handling of lipoproteins in the body is referred to as lipoprotein metabolism. It is divided into two pathways, exogenous and endogenous, depending in large part on whether the lipoproteins in question are composed chiefly of dietary (exogenous) lipids or whether they originated in the liver (endogenous).

Exogenous pathway

Epithelial cells lining the small intestine readily absorb lipids from the diet. These lipids, including triglycerides, phospholipids, and cholesterol, are assembled with apolipoprotein B-48 into chylomicrons. These nascent chylomicrons are secreted from the intestinal epithelial cells into the lymphatic circulation in a process that depends heavily on apolipoprotein B-48. As they circulate through the lymphatic vessels, nascent chylomicrons bypass the liver circulation and are drained via the thoracic duct into the bloodstream.

In the bloodstream, HDL particles donate apolipoprotein C-II and apolipoprotein E to the nascent chylomicron; the chylomicron is now considered mature. Via apolipoprotein C-II, mature chylomicrons activate lipoprotein lipase (LPL), an enzyme on endothelial cells lining the blood vessels. LPL catalyzes the hydrolysis of triacylglycerol (i.e. glycerol covalently joined to three fatty acids) that ultimately releases glycerol and fatty acids from the chylomicrons. Glycerol and fatty acids can then be absorbed in peripheral tissues, especially adipose and muscle, for energy and storage.

The hydrolyzed chylomicrons are now considered chylomicron remnants. The chylomicron remnants continue circulating until they interact via apolipoprotein E with chylomicron remnant receptors, found chiefly in the liver. This interaction causes the endocytosis of the chylomicron remnants, which are subsequently hydrolyzed within lysosomes. Lysosomal hydrolysis releases glycerol and fatty acids into the cell, which can be used for energy or stored for later use.

Endogenous pathway

The liver is another important source of lipoproteins, principally VLDL. Triacylglycerol and cholesterol are assembled with apolipoprotein B-100 to form VLDL particles. Nascent VLDL particles are released into the bloodstream via a process that depends upon apolipoprotein B-100.

As in chylomicron metabolism, the apolipoprotein C-II and apolipoprotein E of VLDL particles are acquired from HDL particles. Once loaded with apolipoproteins C-II and E, the nascent VLDL particle is considered mature.

Again like chylomicrons, VLDL particles circulate and encounter LPL expressed on endothelial cells. Apolipoprotein C-II activates LPL, causing hydrolysis of the VLDL particle and the release of glycerol and fatty acids. These products can be absorbed from the blood by peripheral tissues, principally adipose and muscle. The hydrolyzed VLDL particles are now called VLDL remnants or intermediate density lipoproteins (IDLs). VLDL remnants can circulate and, via an interaction between apolipoprotein E and the remnant receptor, be absorbed by the liver, or they can be further hydrolyzed by hepatic lipase.

Hydrolysis by hepatic lipase releases glycerol and fatty acids, leaving behind IDL remnants, called low density lipoproteins (LDL), which contain a relatively high cholesterol content. LDL circulates and is absorbed by the liver and peripheral cells. Binding of LDL to its target tissue occurs through an interaction between the LDL receptor and apolipoprotein B-100 or E on the LDL particle. Absorption occurs through endocytosis, and the internalized LDL particles are hydrolyzed within lysosomes, releasing lipids, chiefly cholesterol.

Further Reading


This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "Lipoprotein" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Feb 1, 2011

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | العربية | Dansk | Nederlands | Finnish | Ελληνικά | עִבְרִית | हिन्दी | Bahasa | Norsk | Русский | Svenska | Magyar | Polski | Română | Türkçe
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Controlling low-density lipoprotein-cholesterol levels: an interview with Jay Edelberg, M.D., Sanofi and Bill Sasiela, Ph.D., Regeneron