Cloning Unicellular Organisms

Molecular cloning is usually carried out on one gene or small DNA segment at a time. However, cloning technology has advanced to the stage that scientists have begun cloning genomes of entire unicellular organisms. This approach could be valuable for engineering organisms that thus far have not been amenable to propagation and engineering through conventional laboratory methods.

Cloning those organism’s genomes into a host system would allow the genome to be manipulated in that system for research. This type of cloning experiment has been carried out successfully for a number of different unicellular organisms.

Protozoons / unicellular organisms - Image Credit: Christoph Burgstedt / Shutterstock
Protozoons / unicellular organisms - Image Credit: Christoph Burgstedt / Shutterstock

Bacterial Genomes Cloned into Yeast

In one study, published in 2010, investigators describe the cloning of the genomes of Mycoplasma genitalium, M. pneumoniae, and M. mycoides in the yeast Saccharomyces cerevisiae. The genomes were cloned using a yeast centromere, a circular form of DNA native to yeast.

In order to be propagated in yeast, the bacterial genome must include some yeast sequences. Those are incorporated by standard molecular cloning in the bacterial genome. They can also be added by co-transformation in the yeast. Another option is cloning by assembly of multiple, overlapping fragments.

A significant fraction of yeast transformants prepared by these methods had complete mycoplasma genomes. Some clones contained incomplete mycoplasma genomes, for unknown reasons. Sequences of M. mycoides genomes isolated from the cloned yeast showed the same sequence as the parent organism, except for changes made for the purposes of cloning.

These methods may be useful for studying organisms that don’t grow under laboratory conditions or do not have readily available genetic tools. For example, pathogens and organisms collected by environmental sampling. Once the genome is cloned in yeast, it can be manipulated with standard genetic engineering methods for yeast.

Genome Transplantation

Another application would be genome transplantation, where an engineered genome is installed in a new bacterial cell and manipulated to create an organism with certain traits.

In a 2007 publication, researchers describe a genome transplantation experiment. They transplanted intact genomic DNA from Mycoplasma mycoides large colony into M. capricolum cells using polyethylene glycol-mediated transformation. The resulting cell line contained the complete donor genome, free of recipient genomic sequences and were phenotypically identical to the donor strain.

According to the J. Craig Venter Institute, cloning whole bacterial genomes from one unicellular organism to another is a step toward creating a synthetic genome--a major goal of the institute. Scientists at JCVI followed up on the 2007 bacterial transplantation experiment by cloning a whole bacterial genome from M. mycoides into a yeast cell. They then isolated the cloned bacterial chromosome and transplanted it into a related bacterium, M. capricolum, creating a new type of M. mycoides.

It was the first time that a genome had been transferred from a prokaryote to a eukaryote and back to a prokaryote again. One of the challenges of the final stage was methylating the cloned genome from yeast so that it could be transformed back into a bacterium.

References

  1. Creation of a bacterial cell controlled by a chemically synthesized genome, https://www.ncbi.nlm.nih.gov/pubmed/20488990
  2. Genome transplantation in bacteria: changing one species to another, https://www.ncbi.nlm.nih.gov/pubmed/17600181
  3. J. Craig Venter Institute researchers clone and engineer bacterial genomes in yeast and transplant genomes back into bacterial cells, https://www.jcvi.org/
  4. Cloning whole bacterial genomes in yeast, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860123/

Further Reading

Last Updated: Jul 19, 2023

Dr. Catherine Shaffer

Written by

Dr. Catherine Shaffer

Catherine Shaffer is a freelance science and health writer from Michigan. She has written for a wide variety of trade and consumer publications on life sciences topics, particularly in the area of drug discovery and development. She holds a Ph.D. in Biological Chemistry and began her career as a laboratory researcher before transitioning to science writing. She also writes and publishes fiction, and in her free time enjoys yoga, biking, and taking care of her pets.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Shaffer, Catherine. (2023, July 19). Cloning Unicellular Organisms. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/life-sciences/Cloning-Unicellular-Organisms.aspx.

  • MLA

    Shaffer, Catherine. "Cloning Unicellular Organisms". News-Medical. 31 October 2024. <https://www.news-medical.net/life-sciences/Cloning-Unicellular-Organisms.aspx>.

  • Chicago

    Shaffer, Catherine. "Cloning Unicellular Organisms". News-Medical. https://www.news-medical.net/life-sciences/Cloning-Unicellular-Organisms.aspx. (accessed October 31, 2024).

  • Harvard

    Shaffer, Catherine. 2023. Cloning Unicellular Organisms. News-Medical, viewed 31 October 2024, https://www.news-medical.net/life-sciences/Cloning-Unicellular-Organisms.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.