Microscopy and British History

Microscopy is the scientific field dedicated to the analysis and imaging of materials too small to be viewed with the naked eye.

The simplest of all optical microscopes is the brightfield microscope, however, scientific advances has lead to the development of more complex, modern technologies that fire photons at a sample and analyze the light scattering patterns in order to generate an image of the sample.

False colour transmission electron microscope (TEM) micrograph of a mitotic cell (blue) surrounded by interphase cells. The chromosomes (red) appear as dark clumps.False colour transmission electron microscope (TEM) micrograph of a mitotic cell (blue) surrounded by interphase cells. The chromosomes (red) appear as dark clumps. (Jose Luis Calvo | Shutterstock).

Electron microscopy and X-ray microscopy, which emit electrons or electromagnetic radiation, respectively, are commonly used alternatives to optical microscopes, as electrons possess a much smaller wavelength than photons and thus generate an image of far greater resolution.

X-ray microscopy lies between electron and optical microscopy in terms of resolution, though has the advantage of being usable on living biological samples. Finally, scanning probe microscopy utilizes a physical probe to scan the surface of a sample, detecting minute changes in height on the surface of a sample.

Early microscopes

The first real microscopes were developed in the late 16th century. Several inventors of the microscope have been suggested, including various eyeglasses manufactures in the Netherlands and Italian scientist Galileo Galilei.

In 1665, English scientist Robert Hooke published a book on microscopy called: ‘Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon’.

The book contained a significant number of illustrations of samples observed using a variety of magnifying lenses, including many insects and plants, and even contained the first occurrence of the word ‘cell’.

Aside from biological samples, Hooke also examined the fine edge of a razor and needle points, noting that the seemingly perfectly sharp razor was in fact jagged, while the needle appeared blunt at such a scale.

Charles DarwinCharles Darwin also made great use of optical microscopes in the late 19th century. He undertook major research work on barnacles, using microscopy to describe their internal structure.

Darwin was considered an expert on microscopy during his lifetime, and even sold a microscope of his own design. Darwin’s microscopy work formed a key part of his theory of speciation, categorizing various extant and extinct species of barnacles, using fossils, into groups. Darwin went on to compare these barnacles with crustaceans, providing compelling evidence regarding the theory of evolution by natural selection.

Modern microscopes

The first scanning electron microscope was created for commercial sale by English scientists Professor Sir Charles Oatley and Dr. Gary Stewart in 1965, working at Cambridge University. They built the original instrument from scratch in the mid 1950’s to study the mechanisms of ion sputtering.

Over the next decade various improvements were made by Oatley’s team, including the incorporation of magnetic lenses to better aim and focus the electron beam.

Electron microscopes possess a resolution of as low as 0.1 nm, allowing for the imaging of objects such as virus’ and even strands of DNA. Electrons are produced and emitted from an electron gun, which passes through several lenses and apertures to focus the electron beam before reaching the sample. The whole chamber containing the electron beam and sample are kept at low pressure in order to minimize interference from gas molecules.

Scientist looking down microscopeKonstantin Kolosov | Shutterstock

Further Reading

Last Updated: Feb 28, 2020

Michael Greenwood

Written by

Michael Greenwood

Michael graduated from the University of Salford with a Ph.D. in Biochemistry in 2023, and has keen research interests towards nanotechnology and its application to biological systems. Michael has written on a wide range of science communication and news topics within the life sciences and related fields since 2019, and engages extensively with current developments in journal publications.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Greenwood, Michael. (2020, February 28). Microscopy and British History. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/life-sciences/Microscopy-and-British-History.aspx.

  • MLA

    Greenwood, Michael. "Microscopy and British History". News-Medical. 31 October 2024. <https://www.news-medical.net/life-sciences/Microscopy-and-British-History.aspx>.

  • Chicago

    Greenwood, Michael. "Microscopy and British History". News-Medical. https://www.news-medical.net/life-sciences/Microscopy-and-British-History.aspx. (accessed October 31, 2024).

  • Harvard

    Greenwood, Michael. 2020. Microscopy and British History. News-Medical, viewed 31 October 2024, https://www.news-medical.net/life-sciences/Microscopy-and-British-History.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research identifies respiratory transmission potential of H5N1 virus