New hi-tech football shirt that alerts managers to players heart rate and hydration levels

NewsGuard 100/100 Score

England footballers who have been suffering in the Portuguese heat could benefit from a new hi-tech football shirt that alerts managers to players heart rate and hydration levels.

The shirt, designed by Northumbria University student David Evans, uses ECG sensors to record the electrical activity of the heart and send signals to a computer on the team bench, alerting managers, coaches and physios to the player's heart rate and highlighting any abnormal rhythms.

Silicon gel based strips are connected to the top of the players' backs and react to sweat loss to monitor hydration levels, indicating when a player is fatigued or dehydrated and could need to be substituted.

Additionally, a sensor on the shirtsleeve allows the bench to communicate with players out on the pitch by sending radio waves to a transmitter that gives off a small vibration and alerts the player to look towards the dug-out when necessary.

The information is sent back to a laptop or PDA handheld computer in the dug-out via a small radio-frequency communication panel at the bottom of the shirt, allowing the bench to monitor the team as a whole or select individual players for attention.

The shirt is made from electro-textile materials and can be easily washed.

The design has already received interest from sports manufacturers and David hopes that it will be picked up and put into production ready for the 2006 World Cup after it is exhibited at the New Designers exhibition in London next month.

Manchester City fan David, 23, from Woodley in Cheshire, has not only designed the football shirt, he has also turned his attentions to football boots and has designed a boot with a pressure sensitive insole that highlights when the pitch conditions are too hard or soft for the studs which could cause unnecessary pressure and injury to the players.

David, who is studying a Design for Industry degree at Northumbria University, took advice from sports scientists from Northumbria and Liverpool John Moores Universities while coming up with his designs.

He said: “I wanted to look at the possibility of monitoring players out on the pitch and find out when they are at their peak performance levels. If the coach can see that a player's heart rate is escalating, it could alert them to make a substitution and protect the player when they are most vulnerable.

“I was already interested in designing something along these lines, but when Marc Vivien-Foe had a heart attack on the pitch last year I realised that this was something which could have a real impact on the game.

“Performance can also suffer when players become dehydrated. Loss of fluid is one of the major causes of fatigue in prolonged exercise. The body temperature increases the more we exercise and we start to sweat more to cool down, losing valuable fluids. The physios can monitor the players' sweat levels and accurately predict when a player needs to up his fluid intake to boost his performance. They can then send a signal to the sensor on the shirtsleeve which will vibrate and lets the player know that someone on the bench wants to communicate with them.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Beta-blockers show no benefit for heart attack patients with normal heart function