Study to look for links between the nervous system and fatal heart rhythm

NewsGuard 100/100 Score

Finding out why seemingly healthy people experience ventricular fibrillation, a fatal irregular heart rhythm, could eventually lead to better methods of early detection, according to a Medical College of Georgia researcher.

"We don't know what starts ventricular fibrillation or why defibrillation – electrically shocking the heart back into beating normally – works to correct it," says Dr. Autumn Schumacher, a new faculty member in the MCG School of Nursing who recently won the American Heart Association's Martha N. Hill New Investigator Award for her research. "We do, however, need a better understanding of this abnormal rhythm and its subtle warning signals so that we can develop smarter bedside monitors."

While the condition is more common in people with undiagnosed heart problems, those who've had a previous heart attack and those with coronary artery disease, it also happens to seemingly healthy people when the body is under stress and secreting adrenaline, says Dr. Schumacher, a physiological and technological nursing professor.

Her current research focuses on what effect adrenaline has on the electrical patterns in the heart.

"The autonomic nervous system controls the heart rate by signaling our body to secrete adrenaline and increase our heart rate based on what we need – the fight or flight reflex," she says.

Researchers already know that ventricular fibrillation occurs when the heart's electrical system malfunctions, the electrical signals that control the pumping of the heart become rapid and chaotic causing the lower chambers of the heart to quiver instead of contract. Those chambers can no longer pump blood to the rest of the body, which leads to sudden cardiac death without defibrillation – a successful emergency shock to jump start the heart back into a regular beat.

Studying those electrical signals is what will lead to better medical equipment, Dr. Schumacher says.

Traditional cardiac tests such as electrocardiograms, which record the electrical activity of the heart and identify abnormal rhythms, and echocardiograms, which use sound waves to create a moving picture of the heart, haven't been able to pinpoint minute changes that are a precursor to ventricular fibrillation; they only provide a picture of large scale electrical activity.

But, by using voltage-sensitive fluorescent dye, injecting it into an isolated animal model and photographing the images at 1,000 frames per second, researchers have been able to see the small picture. These minute images of ventricular fibrillation have recently led to the discovery that the electrical activity during ventricular fibrillation forms distinct patterns.

"The patterns aren't random as we previously thought," Dr. Schumacher says. "They actually form spiral waves that often collide with each other and spin off more spiral waves."

Better bedside monitors will be able to detect the precursors to those spiral wave patterns so that doctors and nurses will have a two-to-three minute warning and can prevent ventricular fibrillation before it happens, she says.

To find out what role adrenaline plays in the whole process, Dr. Schumacher uses various drugs to simulate autonomic nervous system imbalance in an isolated animal heart. Then she photographs fluorescent images of the electrical activity while recording the heart's rhythm with an electrocardiogram.

"We know that autonomic imbalance and too much adrenaline can contribute to the conditions promoting ventricular fibrillation," she says. "This research aims to find out why."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Periodontal treatment after heart rhythm ablation may reduce AFib recurrence