New 3D scaffolding technology may help grow skin and blood vessels in labs

NewsGuard 100/100 Score

Scientists are developing new scaffolding technology which could be used to grow tissues such as skin, nerves and cartilage using 3D spaghetti-like structures. Their research is highlighted in the latest issue of Business, the quarterly highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC).

The new structures are being developed by scientists from the University of Bristol, using proteins from alpha helices - one of the fundamental ways that strings of amino acids fold - to create long fibres called hydrogelating self assembling fibres (hSAFs), or hydrogels. By learning how to build hSAFs from scratch, the researchers are starting to understand how they might use these 3D scaffolds to support the growth of nerves, blood vessels and cartilage tailored to the needs of individual patients.

Professor Dek Woolfson who is leading the work, explains: "To make hydrogels you need something long and thin that will interact with copies of itself and form meshes, but is also water soluble. However rather than using natural proteins, which are complex, we've tried to make something as simple as possible that we fully understand using peptides and self assembling proteins."

Currently, hydrogel scaffold structures, made either synthetically or from natural resources such as seaweed, are used in everyday products from shampoos to drug capsules.

But explains, Professor Woolfson, the hSAFs his team are developing will have different uses: "The downside of using peptides or proteins is that they are expensive compared with synthetic polymers. We are almost certainly looking at high end biomedical applications, generating cells which can be used in living systems. Potential medical benefits include growing tissues such as skin, nerves and cartilage in the laboratory which will advance basic research and may lead to biomedical applications like speeding up wound healing and grafting."

Commenting on the research, BBSRC Chief Executive Professor Doug Kell, said: "This research highlights the importance of understanding how things work at a micro level and then looking at different ways to apply this knowledge to create effective solutions for tackling everyday problems, in this instance, translating basic bioscience into technology which could have very real clinical benefits for patients."

Source: Biotechnology and Biological Sciences Research Council

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Groundbreaking study unveils sex-specific genetic influences on blood pressure