Tendons in high-stress areas repair themselves less frequently than low-stress tendons: Study

NewsGuard 100/100 Score

In a discovery that seems counterintuitive, a study appearing in the May 21st Journal of Biological Chemistry has found that tendons in high-stress and strain areas, like the Achilles tendon, actually repair themselves less frequently than low-stress tendons. This study sheds some light on the increased susceptibility of certain tendons to injury during aging.

Tendons, composed of collagen and other proteins, serve to connect muscle to bone and thus are vital for movement. Considering their strenuous activity, tendons need to be continually repairing collagen damage to avoid buildup of degraded proteins that could cause serious complications. Not all tendons are equal though; some tendons, like those in the hand, are primarily used to maintain proper limb placement while others, like the Achilles tendon in humans and the superficial digital flexor tendon (SDFT) in horses, have to bear a lot of weight and strain.

It would be expected that high-strain tendons would repair more frequently, yet Dr Helen Birch at University College London and colleagues examined protein turnover in the tendons of horses of various ages and found that the high-strain SDFT (located at the rear of the limb) repairs much less frequently than the low-strain common digital extensor tendon (CDET, located at the front of the limb). Birch and colleagues used an approach called amino acid racemization to measure protein age in the horse tendons. Amino acids are always incorporated into proteins in a specific orientation called the L-form, but afterwards can spontaneously convert into a mirror image called the D-form. Therefore, by measuring the ratio of L and D amino acids over time, one can estimate the half-life of a protein.

Through this method, the researchers found that non-collagen proteins in tendon have an average half life of 2.2 years in SDFT and 3.5 years in CDET, which would be expected. However, SDFT collagen had a half-life of 198 years, compared to 34 years for CDET collagen. That means that every year, only 0.25% of the injury-prone collagen gets replaced in SDFT tissue. Over time, degraded protein and other mechanically-induced micro-damage could reduce the overall integrity of the tendon, which could lead to large-scale injuries. As to why the body would seemingly put its more important tendons at greater risk, the researchers suggest that it may be a trade off; too much repair may compromise the strength and stiffness of these tendons which are used heavily, so the body tries to preserve their structural integrity at the expense of increased injury risk later in life.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Wearable devices reveal stress-related changes during sleep