Duke University physicists develop technique to inject material into cells through sharp fluid jets

NewsGuard 100/100 Score

Duke University physicists have developed a way to produce sharp fluid jets with enough precision that they can inject material into a single, living cell. The technique promises a way to deliver drugs to cells one at a time, which is likely to be very valuable for research involving stem cells and other cellular-level studies. The research appears in the current issue of the APS journal Physical Review Letters.

The physicists produced the jets by focusing lasers into a fluid surrounding a target cell. The lasers heated molecules of a blue dye dissolved in the fluid, which in turn created tiny bubbles to rapidly grow and collapse. When these sorts of bubbles are produced individually, they create shock waves that spread throughout the liquid. But producing two adjacent bubbles in rapid succession results in small, powerful jets capable of poking tiny holes, measuring only 0.2 millionths of a meter across, in cell membranes.

The researchers confirmed that the jets allowed the introduction of fluids into the cell by checking for signs of the blue dye inside the pierced cells. The dye is toxic, and it killed the pierced cells, but the holes the jets produced were small enough that it's likely that the jets will offer a way to inject live cells with nontoxic substances without significantly damaging them.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CASGEVY gene therapy eliminates vaso-occlusive crises in sickle cell patients