Correlated Light & Electron Microscopy at the Universities of Delft and Groningen

DELMIC develops and manufactures products which are focused on high performance, user friendly, integrated microscopy solutions. Users of Delmic's SECOM solution for Correlated Light & Electron Microscopy (CLEM) have recently published a review in Nature Methods that illustrates the power of CLEM in the world of biology.

The boom in the use of super-resolution microscopies in recent years reached a peak with the award of the 2014 Nobel Prize in Chemistry to Betzig, Hell and Moerner for their contributions in the development of super-resolved fluorescence microscopy. Bridging technologies to advance the possibilities of a better understanding of biological processes has driven researchers to new capabilities. Light microscopy has been used since the mid seventeenth century to observe living microorganisms and cells. Later, the use of fluorescent dyes enabled the localisation of molecules within living cells. In parallel, electron microscopy (EM) was used to study cellular ultrastructure. Now, these microscopies have been integrated in a new technique called CLEM – Correlated Light and Electron Microscopy.

Pascal de Boer and Ben Giepmans from the Department of Cell Biology at the University of Groningen together with Jacob Hoogenboom from the Faculty of Applied Sciences at Delft University of Technology have just published a review of CLEM with the encompassing sub-title of "ultrastructure lights up!" The review is published in Nature Methods1 and is now available online.

The high performance fluorescence SECOM platform for integration with any SEM.

The high performance fluorescence SECOM platform for integration with any SEM.

The paper highlights the rapid development and growth of CLEM. Previously, fluorescence and EM experiments on the same sample were performed sequentially. Now, it is possible to perform these in integrated systems such as the SECOM platform.2 The authors illustrate this with some work from Christopher Peddie and Lucy Collinson from Cancer Research UK. This shows integrated microscopy (using the SECOM system) of resin-embedded HeLa cells expressing GFP-C1, a diacylglycerol sensor. The overlaid data shows excellent correlation between the fluorescence and EM images clearly illustrating the power of using such techniques in the future. As the authors state, "CLEM adds resolution and cellular context to LM observations and adds dynamics and target identification to EM observations. Experiments based on CLEM are beginning to provide insight in several biological contexts."

For more details about DELMIC's SECOM system and applications in biology and the life sciences, please contact DELMIC on +31 (0)15 7440158 or visit the web site: https://www.delmic.com/en/

About DELMIC BV

DELMIC BV was founded in 2010 to develop and manufacture the SECOM platform. This originated from the Charged Particle Optics group of Delft University of Technology. At the end of 2011, the company obtained the SPARC system from Albert Polman's Photonic Materials group of the FOM Institute AMOLF, Amsterdam. In 2014, in collaboration with benchtop EM supplier, Phenom-World, DELMIC launched Delphi, the world’s first integrated tabletop fluorescence and electron correlative microscope. Together, the SECOM, the SPARC and the Delphi enable DELMIC to cater to a broad range of researchers with applications from nanophotonics to life sciences.

All systems are currently commercially available. DELMIC focuses on the belief that integrated systems are the perfect way for users to obtain exciting new results quickly and accurately, without the need for specialist instrument training.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Delmic B.V.. (2023, March 30). Correlated Light & Electron Microscopy at the Universities of Delft and Groningen. News-Medical. Retrieved on April 24, 2024 from https://www.news-medical.net/news/20150714/Correlated-Light-Electron-Microscopy-at-the-Universities-of-Delft-and-Groningen.aspx.

  • MLA

    Delmic B.V.. "Correlated Light & Electron Microscopy at the Universities of Delft and Groningen". News-Medical. 24 April 2024. <https://www.news-medical.net/news/20150714/Correlated-Light-Electron-Microscopy-at-the-Universities-of-Delft-and-Groningen.aspx>.

  • Chicago

    Delmic B.V.. "Correlated Light & Electron Microscopy at the Universities of Delft and Groningen". News-Medical. https://www.news-medical.net/news/20150714/Correlated-Light-Electron-Microscopy-at-the-Universities-of-Delft-and-Groningen.aspx. (accessed April 24, 2024).

  • Harvard

    Delmic B.V.. 2023. Correlated Light & Electron Microscopy at the Universities of Delft and Groningen. News-Medical, viewed 24 April 2024, https://www.news-medical.net/news/20150714/Correlated-Light-Electron-Microscopy-at-the-Universities-of-Delft-and-Groningen.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.