Plymouth University and Ingenza partner to develop efficient, scalable microbial production system for epidermicin

NewsGuard 100/100 Score

Ingenza is collaborating with researchers at Plymouth University to develop an efficient, scalable microbial production system for epidermicin, an exciting new antibiotic that rapidly kills methicillin-resistant Staphylococcus aureus (MRSA) and other harmful bacteria.

Mathew Upton, Associate Professor in Medical Microbiology at Plymouth University, explained:

Epidermicin is a stable, 51 amino acid peptide originally found in Staphylococcus epidermidis, which is effective against gram-positive bacteria such as staphylococci, streptococci and enterococci. It is more potent than existing antibiotics, is non-toxic and represents a new tool in the arsenal of antibiotic medications. However, epidermicin is produced in very low amounts in its native biological host and synthetic chemical production of such peptides is prohibitively expensive, which was a big stumbling block for its use in clinical situations.

We spoke to Ingenza about using its cutting-edge inABLE® technology to produce commercially viable amounts of epidermicin in an alternative biological production host system. The company is very dynamic and wanted to engage with us, showing a real interest in the project and developing a longer term relationship with the university. With the support of an award from the InnovateUK Industrial Biotechnology Catalyst scheme, we are now working together to develop an integrated approach to the efficient production of epidermicin driven by synthetic biology. We aim to establish a method that produces from tens to hundreds of milligrams of peptide per litre of culture grown. By the end of the project, we hope to be producing sufficient quantities of peptide to carry out pre-clinical toxicity, formulation and stability type studies, eventually leading to a phase one clinical trial. That would be the ideal situation, and a perfect conclusion to the project.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Texas A&M scientists elucidate how phages disarm antibiotic-resistant bacteria