Home dust chemicals predict asthma and allergies in children

NewsGuard 100/100 Score

Millions of children worldwide suffer from asthma and allergic rhinitis (AR), two chronic respiratory conditions that significantly impact their quality of life. While environmental factors are known to play a role, pinpointing the exact culprits has been challenging, particularly due to the vast diversity of the indoor microbiome.

In the groundbreaking study published in the journal Eco-Environment & Health, researchers have made a pivotal discovery concerning asthma and allergic rhinitis (AR). This work underscores the critical roles of indoor microorganisms and metabolites, shedding new light on the environmental factors that trigger these prevalent respiratory conditions.

Indoor metabolites: A chemical fingerprint of the home environment

This study, conducted by researchers in China and Malaysia, takes a novel approach by focusing on indoor metabolites and chemicals - the products of both microbial and human activity in the home environment. Using high-throughput technologies, the team compared the dust composition of homes with children diagnosed with asthma, AR, or both, with homes of healthy children. The analysis revealed distinct differences in the chemical profiles of the two groups. Homes with diseased children had higher levels of mycotoxins (toxic fungal metabolites) and synthetic chemicals like herbicides, insecticides, and food/cosmetic additives. Conversely, the homes of healthy children were enriched with beneficial environmental microbes and metabolites like keto acids, indoles, pyridines, and flavonoids (astragalin and hesperidin). Excitingly, the researchers developed a model based on these characteristic metabolites and chemicals that could accurately predict the prevalence of asthma and AR in an independent dataset from Malaysia. This suggests that analyzing dust for its chemical fingerprint may be a more reliable and consistent way to assess environmental risk for these diseases than studying the complex and variable microbiome.

Towards a "metabolically healthy" home environment

The study's findings pave the way for exciting new possibilities in preventing and managing childhood asthma and AR. By testing for specific metabolites in household dust, we could potentially identify homes with unhealthy chemical profiles and implement targeted interventions. This could involve promoting the growth of beneficial microbes through probiotic sprays or adjusting ventilation systems to reduce toxin exposure.

In conclusion, this study marks a significant shift in our understanding of the environmental factors contributing to childhood asthma and AR. By prioritizing indoor metabolites and chemicals, we may finally have a robust and practical tool for environmental assessment and, ultimately, the creation of "metabolically healthy" homes for our children.

Source:
Journal reference:

Sun, Y., et al. (2023). Indoor metabolites and chemicals outperform microbiome in classifying childhood asthma and allergic rhinitis. Eco-Environment & Health. doi.org/10.1016/j.eehl.2023.08.001.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Higher zinc intake linked to lower asthma risk in overweight kids