MicroRNA and Disease

Just as miRNA is involved in the normal functioning of eukaryotic cells, so has dysregulation of miRNA been associated with disease. Disease association in turn has led to increased funding opportunities for academic research and financial incentives for development and commercialization of miRNA-based diagnostics and therapeutics. After early commercialization aimed at academic research support was established, the initial research focus based on products and services requested was on cancer and neuroscience research. During 2007, interests indicated by product and services requested broadened to include cardiac research, virology, cell biology in general and plant biology.

miRNA and cancer

Several miRNAs has been found to have links with some types of cancer.

A study of mice altered to produce excess c-myc — a protein implicated in several cancers — shows that miRNA has an effect on the development of cancer. Mice that were engineered to produce a surplus of types of miRNA found in lymphoma cells developed the disease within 50 days and died two weeks later. In contrast, mice without the surplus miRNA lived over 100 days.

Leukemia can be caused by the insertion of a virus next to the the 17-92 array of microRNAs leading to increased expression of this microRNA.

Another study found that two types of miRNA inhibit the E2F1 protein, which regulates cell proliferation. miRNA appears to bind to messenger RNA before it can be translated to proteins that switch genes on and off.

By measuring activity among 217 genes encoding miRNA, patterns of gene activity that can distinguish types of cancers can be discerned. miRNA signatures may enable classification of cancer. This will allow doctors to determine the original tissue type which spawned a cancer and to be able to target a treatment course based on the original tissue type. miRNA profiling has already been able to determine whether patients with chronic lymphocytic leukemia had slow growing or aggressive forms of the cancer. In 2008, the companies Asuragen and Exiqon were working to commercialize this potential for miRNAs to act as cancer biomarkers.

miRNA and heart disease

The global role of miRNA function in the heart has been addressed by conditionally inhibiting miRNA maturation in the murine heart, and has revealed that miRNAs play an essential role during its development. miRNA expression profiling studies demonstrate that expression levels of specific miRNAs change in diseased human hearts, pointing to their involvement in cardiomyopathies. Furthermore, studies on specific miRNAs in animal models have identified distinct roles for miRNAs both during heart development and under pathological conditions, including the regulation of key factors important for cardiogenesis, the hypertrophic growth response, and cardiac conductance. In 2008, academic work on the relationship between miRNA and heart disease had advanced sufficiently to lead to the establishment of a company, miRagen Therapeutics, with a primary focus on "cardiovascular health and disease".

Other conditions

One study implicates miRNA as a factor in the development of schizophrenia.

Further Reading


This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "MicroRNA" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Feb 1, 2011

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | العربية | Dansk | Nederlands | Finnish | Ελληνικά | עִבְרִית | हिन्दी | Bahasa | Norsk | Русский | Svenska | Magyar | Polski | Română | Türkçe
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Tiny molecule may provide marker for depression