Pneumonia Treatment

Most cases of pneumonia can be treated without hospitalization. Typically, oral antibiotics, rest, fluids, and home care are sufficient for complete resolution. However, people with pneumonia who are having trouble breathing, people with other medical problems, and the elderly may need more advanced treatment. If the symptoms get worse, the pneumonia does not improve with home treatment, or complications occur, the person will often have to be hospitalized.

Bacterial pneumonia

Antibiotics are used to treat bacterial pneumonia. In contrast, antibiotics are not useful for viral pneumonia, although they sometimes are used to treat or prevent bacterial infections that can occur in lungs damaged by a viral pneumonia. The antibiotic choice depends on the nature of the pneumonia, the most common microorganisms causing pneumonia in the local geographic area, and the immune status and underlying health of the individual. Treatment for pneumonia should ideally be based on the causative microorganism and its known antibiotic sensitivity. However, a specific cause for pneumonia is identified in only 50% of people, even after extensive evaluation. Because treatment should generally not be delayed in any person with a serious pneumonia, empiric treatment is usually started well before laboratory reports are available. In the United Kingdom, amoxicillin and clarithromycin or erythromycin are the antibiotics selected for most patients with community-acquired pneumonia; patients allergic to penicillins are given erythromycin instead of amoxicillin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, macrolides (such as azithromycin and clarithromycin), the fluoroquinolones, and doxycycline have displaced amoxicillin as first-line outpatient treatment for community-acquired pneumonia. The duration of treatment has traditionally been seven to ten days, but there is increasing evidence that shorter courses (as short as three days) are sufficient.

Antibiotics for hospital-acquired pneumonia include third- and fourth-generation cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, and vancomycin. These antibiotics are usually given intravenously. Multiple antibiotics may be administered in combination in an attempt to treat all of the possible causative microorganisms. Antibiotic choices vary from hospital to hospital because of regional differences in the most likely microorganisms, and because of differences in the microorganisms' abilities to resist various antibiotic treatments.

People who have difficulty breathing due to pneumonia may require extra oxygen. Extremely sick individuals may require intensive care, often including endotracheal intubation and artificial ventilation.

Viral pneumonia

Viral pneumonia caused by influenza A may be treated with rimantadine or amantadine, while viral pneumonia caused by influenza A or B may be treated with oseltamivir or zanamivir. These treatments are beneficial only if they are started within 48 hours of the onset of symptoms. Many strains of H5N1 influenza A, also known as avian influenza or "bird flu," have shown resistance to rimantadine and amantadine. There are no known effective treatments for viral pneumonias caused by the SARS coronavirus, adenovirus, hantavirus, or parainfluenza virus.

Aspiration pneumonia

There is no evidence to support the use of antibiotics in chemical pneumonitis without bacterial infection. If infection is present in aspiration pneumonia, the choice of antibiotic will depend on several factors, including the suspected causative organism and whether pneumonia was acquired in the community or developed in a hospital setting. Common options include clindamycin, a combination of a beta-lactam antibiotic and metronidazole, or an aminoglycoside.

Corticosteroids are commonly used in aspiration pneumonia, but there is no evidence to support their use either. Viral pneumonia may last longer, and mycoplasmal pneumonia may take four to six weeks to resolve completely. In cases where the pneumonia progresses to blood poisoning (bacteremia), just over 20% of sufferers die.

The death rate (or mortality) also depends on the underlying cause of the pneumonia. Pneumonia caused by ''Mycoplasma'', for instance, is associated with little mortality. However, about half of the people who develop methicillin-resistant ''Staphylococcus aureus'' (MRSA) pneumonia while on a ventilator will die. In regions of the world without advanced health care systems, pneumonia is even deadlier. Limited access to clinics and hospitals, limited access to x-rays, limited antibiotic choices, and inability to treat underlying conditions inevitably leads to higher rates of death from pneumonia. For these reasons, the majority of deaths in children under five due to pneumococcal disease occur in developing coutries. - online calculator

  • CURB-65 score, which takes into account the severity of symptoms, any underlying diseases, and age - online calculator

Further Reading



This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "Pneumonia" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Feb 1, 2011

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | العربية | Dansk | Nederlands | Filipino | Finnish | Ελληνικά | עִבְרִית | हिन्दी | Bahasa | Norsk | Русский | Svenska | Magyar | Polski | Română | Türkçe
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
U-M researchers propose new ways to fight sepsis