What is Vitamin C?

Vitamin C or L-ascorbic acid is an essential nutrient for humans, in which it functions as a vitamin. Ascorbate (an ion of ascorbic acid) is required for a range of essential metabolic reactions in all animals and plants. It is made internally by almost all organisms; notable mammalian exceptions are most or all of the order chiroptera (bats), and the entire suborder Anthropoidea (Haplorrhini) (tarsiers, monkeys and apes). It is also needed by guinea pigs and some species of birds and fish. Deficiency in this vitamin causes the disease scurvy in humans. It is also widely used as a food additive.

The pharmacophore of vitamin C is the ascorbate ion. In living organisms, ascorbate is an anti-oxidant, since it protects the body against oxidative stress, and is a cofactor in several vital enzymatic reactions. Ascorbic acid was finally isolated in 1933 and synthesized in 1934.

The uses and recommended daily intake of vitamin C are matters of on-going debate, with RDI ranging from 45 to 95 mg/day. Proponents of megadosage propose from 200 to upwards of 2000 mg/day. A recent meta-analysis of 68 reliable antioxidant supplementation experiments, involving a total of 232,606 individuals, concluded that consuming additional ascorbate from supplements may not be as beneficial as thought.

Vitamin C is purely the L-enantiomer of ascorbate; the opposite D-enantiomer has no physiological significance. Both forms are mirror images of the same molecular structure. When L-ascorbate, which is a strong reducing agent, carries out its reducing function, it is converted to its oxidized form, L-dehydroascorbate. L-dehydroascorbate can then be reduced back to the active L-ascorbate form in the body by enzymes and glutathione. During this process semidehydroascorbic acid radical is formed. Ascorbate free radical reacts poorly with oxygen, and thus, will not create a superoxide. Instead two semidehydroascorbate radicals will react and form one ascorbate and one dehydroascorbate. With the help of glutathione, dehydroxyascorbate is converted back to ascorbate. The presence of glutathione is crucial since it spares ascorbate and improves antioxidant capacity of blood. Without it dehydroxyascorbate could not convert back to ascorbate.

L-ascorbate is a weak sugar acid structurally related to glucose which naturally occurs either attached to a hydrogen ion, forming ascorbic acid, or to a metal ion, forming a mineral ascorbate.

Biosynthesis

The vast majority of animals and plants are able to synthesize their own vitamin C, through a sequence of four enzyme-driven steps, which convert glucose to vitamin C. In reptiles and birds the biosynthesis is carried out in the kidneys.

Among the animals that have lost the ability to synthesise vitamin C are simians (specifically the suborder haplorrhini, which includes humans), guinea pigs, a number of species of passerine birds (but not all of them—there is some suggestion that the ability was lost separately a number of times in birds), and many (probably all) major families of bats, including major insect and fruit-eating bat families. These animals all lack the L-gulonolactone oxidase (GULO) enzyme, which is required in the last step of vitamin C synthesis, because they have a defective form of the gene for the enzyme (Pseudogene ΨGULO).

Some of these species (including humans) are able to make do with the lower levels available from their diets by recycling oxidised vitamin C.

Most simians consume the vitamin in amounts 10 to 20 times higher than that recommended by governments for humans. This discrepancy constitutes much of the basis of the controversy on current recommended dietary allowances. It is countered by arguments that humans are very good at conserving dietary vitamin C, and are able to maintain blood levels of vitamin C comparable with other simians, on a far smaller dietary intake.

An adult goat, a typical example of a vitamin C-producing animal, will manufacture more than 13 g of vitamin C per day in normal health and the biosynthesis will increase "many fold under stress". Trauma or injury has also been demonstrated to use up large quantities of vitamin C in humans.

Some microorganisms such as the yeast ''Saccharomyces cerevisiae'' have been shown to be able to synthesize vitamin C from simple sugars.

Vitamin C in evolution

Venturi and Venturi suggested that the antioxidant action of ascorbic acid developed firstly in plant kingdom when, about 500 Mya, plants began to adapt to mineral deficient fresh-waters of estuary of rivers. Some biologists suggested that many vertebrates had developed their metabolic adaptive strategies in estuary environment. In this theory, some 400-300 million years ago when living plants and animals first began the move from the sea to rivers and land, environmental iodine deficiency was a challenge to the evolution of terrestrial life. In plants, animals and fishes, the terrestrial diet became deficient in many essential marine micronutrients, including iodine, selenium, zinc, copper, manganese, iron, etc. Freshwater algae and terrestrial plants, in replacement of marine antioxidants, slowly optimized the production of other endogenous antioxidants such as ascorbic acid, polyphenols, carotenoids, flavonoids, tocopherols etc., some of which became essential “vitamins” in the diet of terrestrial animals (vitamins C, A, E, etc.).

Ascorbic acid or vitamin C is a common enzymatic cofactor in mammals used in the synthesis of collagen. Ascorbate is a powerful reducing agent capable of rapidly scavenging a number of reactive oxygen species (ROS). Freshwater teleost fishes also require dietary vitamin C in their diet or they will get scurvy (Hardie et al.,1991). The most widely recognized symptoms of vitamin C deficiency in fishes are scoliosis, lordosis and dark skin coloration. Freshwater salmonids also show impaired collagen formation, internal/fin haemorrhage, spinal curvature and increased mortality.

If these fishes are housed in seawater with algae and phytoplankton, then vitamin supplementation seems to be less important, presumably because of the availability of other, more ancient, antioxidants in natural marine environment.

Some scientists have suggested that the loss of human ability to make vitamin C may have caused a rapid simian evolution into modern man. However, the loss of ability to make vitamin C in simians must have occurred much further back in evolutionary history than the emergence of humans or even apes, since it evidently occurred sometime after the split in the Haplorrhini (which cannot make vitamin C) and its sister clade which retained the ability, the Strepsirrhini ("wet-nosed" primates). These two branches parted ways about 63 million years ago (Mya). Approximately 5 million years later (58 Mya), only a short time afterward from an evolutionary perspective, the infraorder Tarsiiformes, whose only remaining family is that of the tarsier (Tarsiidae), branched off from the other haplorrhines. Since tarsiers also cannot make vitamin C, this implies the mutation had already occurred, and thus must have occurred between these two marker points (63 to 58 Mya).

It has been noted that the loss of the ability to synthesize ascorbate strikingly parallels the evolutionary loss of the ability to break down uric acid. Uric acid and ascorbate are both strong reducing agents. This has led to the suggestion that in higher primates, uric acid has taken over some of the functions of ascorbate.

Absorption, transport, and disposal

Ascorbic acid is absorbed in the body by both active transport and simple diffusion. Sodium Dependent Active Transport - Sodium-Ascorbate Co-Transporters (SVCTs) and Hexose transporters (GLUTs) are the two transporters required for absorption. SVCT1 and SVCT2 imported the reduced form of ascorbate across plasma membrane. GLUT1 and GLUT3 are the two glucose transporters and only transfer dehydroascorbic acid form of Vitamin C. Although dehydroascorbic acid is absorbed in higher rate than ascorbate, the amount of dehydroascorbic acid found in plasma and tissues under normal conditions is low, as cells rapidly reduce dehydroascorbic acid to ascorbate. Thus, SVCTs appear to be the predominant system for vitamin C transport in the body.

SVCT2 is involved in vitamin C transport in almost every tissue, Knockout animals for SVCT2 die shortly after birth, suggesting that

SVCT2-mediated vitamin C transport is necessary for life.

With regular intake the absorption rate varies between 70 to 95%. However, the degree of absorption decreases as intake increases. At high intake (12g), fractional human absorption of ascorbic acid may be as low as 16%; at low intake (<20 mg) the absorption rate can reach up to 98%. Ascorbate concentrations over renal re-absorption threshold pass freely into the urine and are excreted. At high dietary doses (corresponding to several hundred mg/day in humans) ascorbate is accumulated in the body until the plasma levels reach the renal resorption threshold, which is about 1.5 mg/dL in men and 1.3 mg/dL in women. Concentrations in the plasma larger than this value (thought to represent body saturation) are rapidly excreted in the urine with a half-life of about 30 minutes; concentrations less than this threshold amount are actively retained by the kidneys, and half-life for the remainder of the vitamin C store in the body increases greatly, with the half-life lengthening as the body stores are depleted.

Although the body's maximal store of vitamin C is largely determined by the renal threshold for blood, there are many tissues which maintain vitamin C concentrations far higher than in blood. Biological tissues that accumulate over 100 times the level in blood plasma of vitamin C are the adrenal glands, pituitary, thymus, corpus luteum, and retina.

Those with 10 to 50 times the concentration present in blood plasma include the brain, spleen, lung, testicle, lymph nodes, liver, thyroid, small intestinal mucosa, leukocytes, pancreas, kidney and salivary glands.

Ascorbic acid can be oxidized (broken down) in the human body by the enzyme L-ascorbate oxidase. Ascorbate which is not directly excreted in the urine as a result of body saturation or destroyed in other body metabolism is oxidized by this enzyme and removed.

Deficiency

Scurvy is an avitaminosis resulting from lack of vitamin C, since without this vitamin, the synthesised collagen is too unstable to perform its function. Scurvy leads to the formation of liver spots on the skin, spongy gums, and bleeding from all mucous membranes. The spots are most abundant on the thighs and legs, and a person with the ailment looks pale, feels depressed, and is partially immobilized. In advanced scurvy there are open, suppurating wounds and loss of teeth and, eventually, death. The human body can store only a certain amount of vitamin C,

Nobel prize winner Linus Pauling and Dr. G. C. Willis have asserted that chronic long term low blood levels of vitamin C (chronic scurvy) is a cause of atherosclerosis.

Western societies generally consume sufficient Vitamin C to prevent scurvy. In 2004 a Canadian Community health survey reported that Canadians of 19 years and above have intakes of vitamin C from food of, 133 mg/d for males and 120 mg/d for females, which is higher than the RDA recommendation. In human dietary studies, all obvious symptoms of scurvy previously induced by extremely low vitamin C intake, can be reversed by vitamin C supplementation as small as 10 mg a day. However, needed vitamin C intake for dealing with infection or large amounts of tissue repair (such as in burns) is much higher than the minimal dose needed to reverse scurvy.

Further Reading


This article is licensed under the Creative Commons Attribution-ShareAlike License. It uses material from the Wikipedia article on "Vitamin C" All material adapted used from Wikipedia is available under the terms of the Creative Commons Attribution-ShareAlike License. Wikipedia® itself is a registered trademark of the Wikimedia Foundation, Inc.

Last Updated: Apr 8, 2013

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
  1. Doug Kitt Doug Kitt United States says:

    As stated in this article, "Biological tissues that accumulate over 100 times the level in blood plasma of vitamin C are the adrenal glands, pituitary, thymus, corpus luteum, and retina." A very important tissue has been left off this list. Human skin also contains extremely high levels. And because of its size, the skin contains more vitamin C than any other body organ. See Shindo et al. Enzymic and Non-Enzymic Antioxidants in Epidermis
    and Dermis of Human Skin. J invest Dermatol 102(1) 122-124 (1994)

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Antioxidant biomaterial helps vascular grafts heal