Hybrid Analytical Techniques: GC-MS, LC-MS, GC-IR, LC-NMR

Hybrid techniques are a combination of 2 or more analytical techniques that help detect and quantify components in a mixture. Gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), gas chromatography-infrared spectroscopy (GC-IR), and liquid chromatography-nuclear magnetic resonance spectroscopy (LC-NMR) are a few of the most popular hybrid analytical techniques. These are widely used in chemistry and biochemistry.

Gas Chromatography-Mass Spectrometry

GC-MS is a hybrid technique combining two analytical techniques to form one robust method for analyzing chemical mixtures. While GC separates the individual components in a mixture, MS characterizes the separated components to allow both qualitative and quantitative analysis of a mixture.

In GC, the sample is injected into a mobile phase, which is usually an inert gas such as helium. The individual components of the sample react with the stationary phase at different rates and hence elute at different times. By increasing the temperature of the system, the compounds can be separated on the basis of their boiling points.

The components eluting from the column enter the MS detector where they are fragmented into ions by electron bombardment. A mass spectrum produced for each fragment with the help of a quadrapole acts as a fingerprint and helps identify the compound.

The combination of GC with MS offers an efficient analytical tool to separate, identify, and quantify the individual components of a mixture. Therefore, GC-MS is widely used in medical, environmental, and pharmaceutical industries.

Gas Chromatography/Mass Spectrometry

Liquid Chromatography-Mass Spectrometry

LC-MS combines the separation of molecules by LC or HPLC with mass analysis using MS. It is a highly useful technique that is very sensitive and works according to principles similar to that of GC-MS. It is used in the separation, detection, and identification of chemicals in complex mixtures such as natural product extracts. LC-MS systems can also be used for preparative uses such as mass-based purification of substances for use in research, agrochemical, pharmaceutical, and food industries.

LC-MS is used in the bioanalysis of pharmaceuticals to determine drug retention times in the body. In proteomics, LC-MS is useful in the analysis of complex peptide samples and mass fingerprinting of individual peptides. This technique also finds use in the profiling of secondary metabolites in plants and in different stages of drug development such as peptide mapping, bioaffinity screening, glycoprotein mapping, in vivo drug screening, impurity identification, and quality control.

Gas Chromatography-Infrared Spectroscopy

GC-IR is a separation technique similar to GC-MS - the only difference is that the identification is carried out using IR spectroscopy here. IR spectroscopy deals with the analysis of molecular interactions with IR light of the electromagnetic spectrum. It measures the wavelength and the intensity at which a sample absorbs IR light.

GC-IR was initially performed by passing the eluted molecules from the packed column through the IR instrument. With the development of FT-IR, the analysis of GC effluent in real time became possible.

Like other hybrid techniques, GC-IR can be used for both qualitative and quantitative analysis. It is widely used in the detection of aromatics and oxygenates in gasoline in the petrochemical industry. Its environmental applications include identification of hazardous waste and the detection of contaminants in soil. It is also used in drug development and quality control in the pharmaceutical industry as well as in the food, flavor, and fragrance industry.

Liquid Chromatography-Nuclear Magnetic Resonance Spectroscopy

In LC-NMR, LC and NMR are combined for analytical uses. NMR spectroscopy is a powerful technique that exploits the magnetic properties of different molecules. The resonance frequency of a molecule varies with the intramolecular magnetic field present around an atom. This variation can help in the study of the molecule’s electronic structure. In LC-NMR, the sample-containing loops are transferred to the NMR spectrometer after chromatographic separation.

LC-NMR systems from Bruker are suitable for the analysis of unstable and sensitive compounds. They offer fully automated analysis involving LC separation and NMR characterization. More sophisticated Bruker LC- solid phase extraction (SPE)-NMR systems offer drastic increases in signal-to-noise ratio of the NMR spectra which is helpful in complete structural elucidation.

References

  • http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658024/
  • https://www.gmu.edu/depts/SRIF/tutorial/gcd/gc-ms2.htm
  • http://www.ecs.umass.edu/eve/background/methods/chemical/Openlit/Chromacademy%20LCMS%20Intro.pdf
  • https://www.agilent.com/cs/library/eseminars/Public/Separate%20and%20Identify%20with%20GC-FTIR.pdf
  • https://www.bruker.com/en.html

Further Reading

Last Updated: Jul 19, 2023

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2023, July 19). Hybrid Analytical Techniques: GC-MS, LC-MS, GC-IR, LC-NMR. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/life-sciences/Hybrid-Analytical-Techniques-GC-MS-LC-MS-GC-IR-LC-NMR.aspx.

  • MLA

    Cheriyedath, Susha. "Hybrid Analytical Techniques: GC-MS, LC-MS, GC-IR, LC-NMR". News-Medical. 31 October 2024. <https://www.news-medical.net/life-sciences/Hybrid-Analytical-Techniques-GC-MS-LC-MS-GC-IR-LC-NMR.aspx>.

  • Chicago

    Cheriyedath, Susha. "Hybrid Analytical Techniques: GC-MS, LC-MS, GC-IR, LC-NMR". News-Medical. https://www.news-medical.net/life-sciences/Hybrid-Analytical-Techniques-GC-MS-LC-MS-GC-IR-LC-NMR.aspx. (accessed October 31, 2024).

  • Harvard

    Cheriyedath, Susha. 2023. Hybrid Analytical Techniques: GC-MS, LC-MS, GC-IR, LC-NMR. News-Medical, viewed 31 October 2024, https://www.news-medical.net/life-sciences/Hybrid-Analytical-Techniques-GC-MS-LC-MS-GC-IR-LC-NMR.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High levels of microplastics found in prostate tumors, possibly linked to take-out food