Two-Photon Microscopy

 

Two-photon microscopy (also known as two-photon fluorescence light microscopy) was invented in 1990 as a new method of imaging live cells and tissues in three-dimensions. Conventional fluorescence microscopy illuminates a specimen through the processes of excitation and emission.

Credit: sfam_photo/ Shutterstock.com

In this conventional method excitation occurs when a shorter wavelength light is absorbed by an electron of the fluorophore (a fluorescent molecule which re-emits light upon exposure to a photon), so the photon (a particle which conveys light) changes the condition of the fluorophore from the ground state to a higher energy excited state. Emission is when the fluorophore returns to its lower energy state by emitting a photon at a longer wavelength.

Two-photon microscopy differs from conventional fluorescence microscopy as the excitation wavelengths of the two photons are longer than the resulting emitted light. The method reduces the risk of photo bleaching and photo toxicity that may limit the application of conventional fluorescence microscopy for living specimens. This is because it optimizes the process and detects more single photons per excitation event.

 

Principles of Two-Photon Microscopy

The theoretical foundation of two-photon microscopy is two-photon excitation. This is where a fluorophore is excited by the simultaneous absorption of two photons. The two photons are less energetic and have a longer wavelength than conventional excitation with a single photon.

The wavelengths of the two photons in two-photon microscopy are usually in the infrared spectral range whilst the single photon in conventional fluorescence microscopy is in the ultraviolet or blue/green spectral range. The simultaneous absorption of the two photons by the fluorophore is dependent on the combined energy of the two photons being greater than the gap between the energy of the grounded and excited states.

Two-photon microscopy produces fluorescence in the area where the laser beam is tightly focused. This is because the two photons that are absorbed and excite the fluorophore increase the probability of emission quadratically with excitation density. Therefore, excitation mainly occurs at the microscope focal volume where photon density is high. Of the total fluorescence signal emitted, 80% is derived from a region one micrometer thick about the focal point.

 

The Structure of Two-Photon Microscopes

The structure of two-photon microscopes consists of combining the fundamentals of two-photon absorption with the application of a laser scanner. The laser is focused to a tight area on the specimen plane and then scanned in parallel over the sample.

As the laser comes into contact with the fluorophores in the sample, the fluorescence photons are generated in the small focal volume and detected by photodetectors. The signal produced is mapped to individual pixels of the image via a computer.

The structure of the fluorescence detection path differs between conventional fluorescence microscopes and two-photon microscopes. For conventional fluorescence microscopes the light passes through scan mirrors and through a pinhole before detection.

In two-photon microscopy, the objective lens collects all the fluorescence photos that constitute the emitting signal - therefore, a detector pinhole is not required. A further difference is the type of laser utilized. Two-photon microscopy lasers provide a rapid stream of pulses that can achieve the required high photon density and flux.

 

Advantages of Two-Photon Microscopy

One of the main advantages to two-photon microscopy is that the long excitation wavelengths from the two photons are less damaging to the specimen. Long excitation wavelengths also provide deeper penetration of tissues, on average between five and twenty times deeper than conventional fluorescent microscopes.

Furthermore, a deeper penetration is produced due to a reduced scattering and a reduction in the absorption of light by chromophores (i.e. a light absorbing group of atoms and electrons responsible for the color of a compound). Because the excitation occurs near the focal plane, tissue damage is reduced to the surrounding area. A further advantage to the concentrated area of the laser is that resulting images have fewer blurs, therefore avoiding difficulties in interpretation caused by light that is out-of-focus.

Sources:

  1. http://science.sciencemag.org/content/248/4951/73
  2. http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0002991/abstract
  3. https://www.cell.com/
  4. http://mcb.berkeley.edu/labs2/robey/content/2-photon-imaging

 

Further Reading

Last Updated: Jul 19, 2023

Shelley Farrar Stoakes

Written by

Shelley Farrar Stoakes

Shelley has a Master's degree in Human Evolution from the University of Liverpool and is currently working on her Ph.D, researching comparative primate and human skeletal anatomy. She is passionate about science communication with a particular focus on reporting the latest science news and discoveries to a broad audience. Outside of her research and science writing, Shelley enjoys reading, discovering new bands in her home city and going on long dog walks.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Stoakes, Shelley Farrar. (2023, July 19). Two-Photon Microscopy. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/life-sciences/Two-Photon-Microscopy.aspx.

  • MLA

    Stoakes, Shelley Farrar. "Two-Photon Microscopy". News-Medical. 31 October 2024. <https://www.news-medical.net/life-sciences/Two-Photon-Microscopy.aspx>.

  • Chicago

    Stoakes, Shelley Farrar. "Two-Photon Microscopy". News-Medical. https://www.news-medical.net/life-sciences/Two-Photon-Microscopy.aspx. (accessed October 31, 2024).

  • Harvard

    Stoakes, Shelley Farrar. 2023. Two-Photon Microscopy. News-Medical, viewed 31 October 2024, https://www.news-medical.net/life-sciences/Two-Photon-Microscopy.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Calcium channel blockers show potential to restore cerebral blood flow in Alzheimer's disease