Australian researchers discover stem cell that drives the formation of all breast tissue

NewsGuard 100/100 Score

Victorian Breast Cancer Research Consortium scientists from The Walter and Eliza Hall Institute, using a mouse model, have discovered the rare stem cell that drives the formation of all breast tissue.

This discovery lays an important foundation for understanding how normal breast tissue develops. The identification of the breast stem cell is also likely to provide clues about how breast cancer develops and how rogue cells evade current therapies.

Under normal circumstances, the newly identified breast stem cell will produce healthy tissue. But it is believed that an accumulation of genetic errors, perhaps combined with external influences and a family predisposition, could cause the breast stem cell or a "daughter" cell to produce faulty cells. In effect, the errant breast cell can become a tumour factory.

For many years, scientists and clinicians have been puzzled by the fact that women whose breast cancer cells have been apparently eliminated by chemotherapy sometimes experience a recurrence of their cancer. A cancerous stem cell could provide one possible explanation for such a recurrence.

Chemotherapy works by targeting cells that are dividing rapidly, which is typical behaviour of cancer cells. But an errant stem-like cell may be more resistant to chemotherapy because it divides more slowly. So while chemotherapy can eliminate the bulk of cancer cells, the tumour factory itself – a breast cancer stem cell – may survive months or years later.

In the context of international breast cancer research, the discovery of the breast stem cell is quite profound and will most likely form the basis of research in the area for years to come.

The ultimate objective is to create a drug that will, in effect, switch off breast cancer cells. To do this, the exact makeup of genes expressed by normal and rogue stem cells will need to be determined. Then a drug will be designed to engage with and neutralize the faulty feature of the stem cell.

Further research is now under way on excised human breast tumours to confirm the findings derived from the mouse model. The research team is from the WEHI Group of the Victorian Breast Cancer Research Consortium, which is funded by the Victorian state government through the Cancer Council Victoria.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of new vascular cell type may pave way for novel strategies to treat cardiovascular diseases