First genome-scale model of microbe that causes tuberculosis

NewsGuard 100/100 Score

A team of researchers from the University of Surrey have completed the first genome-scale model of the microbe that causes tuberculosis.

The model may be a highly useful tool to identify new drug targets and design new vaccines.

Tuberculosis remains one of the biggest killers in the world today being responsible for nearly ten million cases and one and a half million deaths each year. New strains are emerging that are resistant to all current front-line anti-tuberculous drugs so new drugs are urgently needed. However, little is known about the metabolism of the TB bacillus and, because of its slow growth, experiments take a very long time.

The Surrey group hopes to speed up the drug discovery process by building an in silico model of the agent that causes TB: a virtual TB bacillus. This model was constructed using information from the entire genome sequence of the pathogen and uses mathematical equations to model the flow of nutrients through the cell. The model is extremely complex, handling 848 different biochemical reactions and 726 genes. The Surrey team showed that the model successfully simulates many of the peculiar properties of the TB bacillus and identifies the drug targets of known anti-tuberculous drugs. But unlike the biological organisms, the in silico TB bacillus grows in nanoseconds so experiments that would normally take months can be performed in minutes. The group hope that the in silico model may be used to identify new drug targets, particularly those capable of killing persistent bacilli.

The work is published in the high-profile journal Genome Biology and describes not only the model but, for the first time, makes an in silico model available to other researchers via an interactive website. Researchers will be able to perform experiments on the virtual TB bacillus from a beach in Bombay or a mountaintop in Malawi. It is hoped that the availability of this novel research tool will stimulate new approaches to control of this deadly pathogen.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Enzymatic cocktail emerges as new hope against mycobacterial infections