Plant colors shed light on antioxidants

NewsGuard 100/100 Score

Scientists have made an important advance in understanding the genetic processes that give flowers, leaves and plants their bright colours. The knowledge could lead to a range of benefits, including better understanding of the cancer-fighting properties of plant pigments and new, natural food colourings.

The research is highlighted in the new issue of Business from the Biotechnology and Biological Sciences Research Council (BBSRC).

The scientists, at the John Innes Centre and Institute of Food Research in Norwich, have pinpointed a key group of enzymes involved in the production of plant pigments. The pigments, called anthocyanins, are what give some plants the vivid colours that they use to attract insects and foraging animals. They also give plants protection against environmental stresses and disease. Hundreds of different anthocyanins exist in nature, all with slightly different chemical compositions. The international research team, supported by BBSRC, identified the genes responsible for the enzymes which chemically modify anthocyanins to alter their properties.

Prof Cathie Martin at the John Innes Centre who co-led the project explains: “Using a new strategy, we conducted biochemical studies on the brassica plant Arabidopsis. We found that a small number of genes responsible for the enzymes that chemically modify anthocyanins were ‘switched on' when the plants were making anthocyanins in response to stress.

“When we transferred these genes to a tobacco plant, the colour of the tobacco flowers changed slightly, confirming that these genes, and the enzymes that they produce, were indeed responsible for modifying anthocyanins.

“What's more, these anthocyanins that had been modified by the enzymes were more stable than those that hadn't. This is significant because stabilised anthocyanins could be used as natural food colourants to replace many artificial colours used in various foods. This improved understanding of the genetics of anthocyanins also provides a better platform for studying their antioxidant properties, important in the fight against cancer, cardiovascular disease and age-related degeneration.”

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis