New model of HIV dynamics

NewsGuard 100/100 Score

The emergence of drug resistant forms of HIV often underlies the failure of current antiretroviral therapies for HIV infection.

Specific mutations in the HIV genome confer resistance to individual drugs. Recombination, a process similar to sexual reproduction in higher organisms, can accelerate the accumulation of resistance mutations by mixing the contents of distinct viral genomes and expedite the failure of therapy. The dynamics of the emergence of recombinant forms of HIV in infected individuals remains poorly understood.

In a study publishing in PLoS Computational Biology on October 26, 2007, researchers Suryavanshi and Dixit from the Indian Institute of Science, Bangalore, India present a new model of HIV dynamics that provides a detailed account of the emergence and growth of recombinant forms of HIV following infection with diverse viral genomes. Analysis of experimental data using the model establishes the high rate of HIV recombination and elucidates the origins of scaling relationships that link the relative prevalence of recombinant forms of HIV to the overall extent of infection. The model provides a framework for predicting the development of multi-drug resistance in HIV patients.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unveiling the key role of RNA modification in HIV-1 survival and replication