New technique may provide quicker and easier way of developing protein-based drugs

NewsGuard 100/100 Score

Research by a Michigan State University chemist could eventually lead to a quicker and easier way of developing protein-based drugs that are key to treating a number of diseases, including cancer, diabetes and hepatitis.

Proteins used in drug manufacture and research often are made within genetically modified Escherichia coli , a one-cell bacteria. That protein tends to collect into what scientists call inclusion bodies. Those hard-to-separate clumps render up to 95 percent of the protein unusable, according to associate chemistry professor David P. Weliky.

Some can be recovered by breaking down the protein to separate it, but because protein structure determines its function, another step must be added to "refold" it into its original configuration.

Weliky and colleagues took a closer look at the structure of the proteins that make up these inclusion bodies. Learning what makes them stick together might yield some clues as to how to separate them, he said, and that could make the manufacturing process more efficient.

Instead of employing more commonly used infrared spectroscopy to look at dehydrated samples, the researchers used nuclear magnetic resonance spectroscopy using whole cells. That technology analyzes the magnetic properties of an atom's nucleus.

While best known as medical diagnostic imaging technology, Weliky and colleagues view NMR as a powerful approach to analyzing biological molecules, including bacterial inclusion bodies. Because the inclusion body protein appeared to be predominantly folded rather than unfolded, it might be possible to extract protein without separating and then refolding, Weliky said.

"This study highlights our ability to probe the molecular structure of a single protein in whole cells and to apply advanced analytical and biochemical methods to a problem of general significance in biotechnology," Weliky said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blood protein could be a potential biomarker for delayed concussion recovery in children