Ultrafine polishing with silica nanoparticles protects teeth

NewsGuard 100/100 Score

Clarkson University Center for Advanced Materials Processing Professor Igor Sokolov and graduate student Ravi M. Gaikwad have discovered a new method of protecting teeth from cavities by ultrafine polishing with silica nanoparticles.

The researchers adopted polishing technology used in the semiconductor industry (chemical mechanical planarization) to polish the surface of human teeth down to nanoscale roughness. Roughness left on the tooth after the polishing is just a few nanometers, which is one-billionth of a meter or about 100,000 times smaller than a grain of sand.

Sokolov and Gaikwad showed that teeth polished in this way become too “slippery” for the "bad" bacteria that is responsible for the destruction of dental enamel. As a result the bacteria can be removed fairly easily before they cause damage to the enamel.

Although silica particles have been used before for tooth polishing, polishing with nanosized particles has not been reported. The researchers hypothesized that such polishing may protect tooth surfaces against the damage caused by cariogenic bacteria, because the bacteria can be removed easily from such polished surfaces.

The Clarkson researchers' findings were published in the October issue of the Journal of Dental Research , the dentistry journal with the top worldwide scientific impact index.

Sokolov is a professor of physics, professor of chemical and biomolecular science, and director of Clarkson's Nanoengineering and Biotechnology Laboratories Center (NABLAB). Gaikwad is a graduate student in physics.

Read more at http://jdr.iadrjournals.org/cgi/content/short/87/10/980.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MADs show comparable blood pressure reduction to CPAP in hypertensive patients with sleep apnea