New findings on Alzheimer's disease suggest a possible way for treatment

NewsGuard 100/100 Score

The action of a small protein that is a major villain in Alzheimer's disease can be counterbalanced with another brain protein, researchers at UT Southwestern Medical Center have found in an animal study.

The findings, available online in the journal Proceedings of the National Academy of Sciences, suggest a promising new tactic against the devastating illness, the researchers said.

The harmful protein, called beta-amyloid, is found in the brain and, when functioning properly, suppresses nerve activity involved with memory and learning. Its normal function can be likened to a red traffic light, restraining nerve cells from getting overexcited when they receive stimulating signals from neighboring cells. People with Alzheimer's disease, however, accumulate too much beta-amyloid - the traffic light gets stuck on "red" and nerve cells become less responsive.

Another brain protein, called Reelin, acts as a "green light," stimulating nerve cells to respond more strongly to their neighbors' signals.

The new study shows that applying Reelin directly to brain slices from mice prevents excess beta-amyloid from completely silencing nerves.

"If we can identify a mechanism to keep the nerve cells functioning strongly, that might provide a way to fight Alzheimer's disease," said Dr. Joachim Herz, professor of molecular genetics and neuroscience at UT Southwestern and the study's senior author.

In the study, the researchers recorded electrical currents in the mouse hippocampus, an area of the brain associated with learning and memory. From their experiments they determined that Reelin and beta-amyloid interact with the same protein complex, called an NMDA receptor, which plays an important role in coordinating chemical signals between adjacent nerve cells.

They found that Reelin activates and strengthens the response of the NMDA receptor. In the presence of too much beta-amyloid, the receptor migrates into the cell, reducing the cell's sensitivity to incoming signals. By contrast, in strong concentrations of Reelin, the receptor remains active and the cell has the green light to continue receiving normally.

Dr. Herz said the study is especially important because this mechanism involves another protein involved in Alzheimer's called ApoE4, which is the primary risk factor for the most frequent late-onset form of the disease. The receptor that binds to ApeE molecules also binds to Reelin, and is part of the red-light/green-light complex that controls the sensitivity of the NMDA receptors.

"These results imply that Reelin, ApoE and beta-amyloid converge on the same molecular mechanism, which is critical in the Alzheimer's disease process, and Reelin may be a common factor to fight both beta-amyloid and mutated ApoE," Dr. Herz said. "This study establishes a rationale that ApoE receptors have an action that can keep the Alzheimer's disease process at bay by preventing damage in the first place."

The researchers are currently studying the role of ApoE4 in this mechanism. Mimicking or preserving normal Reelin function to stimulate the ApoE receptors might provide a path to stave off the disease, Dr. Herz said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers identify new potential target for the treatment of Alzheimer's disease