Lipid may be vital to learning

NewsGuard 100/100 Score

Saturated fats have a deservedly bad reputation, but Johns Hopkins scientists have discovered that a sticky lipid occurring naturally at high levels in the brain may help us memorize grandma's recipe for cinnamon buns, as well as recall how, decades ago, she served them up steaming from the oven.

The Hopkins team, reporting Oct. 29 in Neuron, reveals how palmitate, a fatty acid, marks certain brain proteins - NMDA receptors - that need to be activated for long-term memory and learning to take place. The fatty substance directs the receptors to specific locations in the outer membrane of brain cells, which continually strengthen and weaken their connections with each other, sculpting and resculpting new memory circuits.

Moreover, the researchers report, this fatty modification is a reversible process, with some sort of on-off switch, offering possibilities for manipulating it to enhance or even, perhaps, erase memory.

"Before now, no one knew that NMDA receptors change in response to the addition of palmitate," says Richard Huganir, Ph.D., professor and director of the Solomon H. Snyder Department of Neuroscience at Johns Hopkins.

Scientists have known that a brain signaling chemical called glutamate normally activates NMDA receptors, allowing two neurons to communicate with one another. However, they were less certain what allowed this receptor to assemble properly, or what caused it to make its way to the synapse, the specialized part of nerve cells where communication takes place.

The discovery emerged from work with live neurons in a dish, to which the scientists first fed radioactive palmitate, then separated out the NMDA receptors. By tracking radioactivity on X-ray film, they were able to determine that the fat had attached to the NMDA receptors.

Next, the scientists put both normal and altered NMDA receptors into non-brain cells that don't normally manufacture their own NMDA receptors. By tracking the radioactive fat, they were able to determine where on the NMDA receptor the fat had attached.

Results showed that the NMDA receptor undergoes "dual palmitoylation," in two different regions, each of which plays a distinct role in controlling the fate of the receptor in neurons. When the fat attaches to the first region, it stabilizes the receptor on the surface of neurons. When the fat attaches to the second region, the receptors accumulate inside neurons, perhaps awaiting a signal to send them to synapses. The researchers suspect that this could be part of a quality control measure, assuring that all the Lego-like protein subunits of the receptor are put together properly.

"It is rapidly becoming clear that palmitate regulates not only NMDA receptors, but also other brain proteins at work during signaling across synapses," says Gareth Thomas, Ph.D., a Howard Hughes Medical Institute postdoctoral fellow at Hopkins.

The researchers suspect that if palmitoylation fails, the result would be learning and memory impairment because if NMDA receptors don't make their way to the synapses - the specialized contact points between cells across which chemical messages flow - then communication between neurons is compromised.

"This new modification of the NMDA receptor deepens our molecular understanding of how synapses are regulated and how memories might be formed. It also reveals new potential drug targets, such as the enzymes that add or remove the palmitate," Huganir says. "If we could shift the balance of the palmitoylation, then perhaps we could affect and enhance learning and memory."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Step steady: Consistent walking improves brain function in older adults