New model to analyze health hazards linked with pesticides and toxic chemicals

NewsGuard 100/100 Score

Approximately 80,000 industrial chemicals are in use and about 700 new chemicals are introduced to commerce each year in the United States, according to the U.S. Government Accountability Office. To assess human health risks from exposure to harmful substances, James Englehardt, professor in the College of Engineering at the University of Miami, is proposing a new technique that is more efficient than current methods.

The new model reduces the data requirements 21-fold from previous models, and can predict the likelihood of illness not just from exposure to individual substances, but also from chemical mixtures. The findings are published online in advance of print, by the journal of Risk Analysis.

"The method we are proposing could be applied, for example, to drinking water containing chemical byproducts of chlorine disinfection; well water contaminated with chemicals spilled or released to the subsurface; polluted indoor or outdoor air; or food contaminated with pesticides or other chemicals," says Englehardt, principal investigator of this project.

In general, chemical contaminants do not occur individually, but rather in mixtures, and components of the mixtures can act to increase, or reduce the health effects of other mixture components, explained Englehardt.

"Previously, no generally-accepted dose-response function was known for mixtures," Englehardt says. "I therefore derived a dose-response model that theoretically can be extrapolated from high dose data to low doses of interest, for mixtures of carcinogens and non-carcinogens."

The researchers then developed a Bayesian mathematical technique to allow their model to accept various types of input information and produce a risk estimate that is rigorously more conservative the less information is available for the assessment.

"More generally, I hope to motivate others to study and apply the predictive Bayesian approach to dose-response assessment, which I strongly believe in as a basis for management of ever-progressing chemical technology and for microbial dose-response assessment as well."

Source: University of Miami

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Prenatal exposure to phthalates linked to higher risk of preterm birth and low birth weight