Genetic analysis revises treatment recommendations related to thyroid cancer

NewsGuard 100/100 Score

Cleveland Clinic researchers have discovered three genes that increase the risk of thyroid cancer, which is has the largest incidence increase in cancers among both men and women.

Research led by Charis Eng, M.D., Ph.D., Chair and founding Director of the Genomic Medicine Institute of Cleveland Clinic's Lerner Research Institute, included nearly 3,000 patients with Cowden syndrome (CS) or CS-like disease, which is related to an increased risk of breast and thyroid cancer.

Mutations in the PTEN gene are the foundation of Cowden syndrome. PTEN is a tumor suppressor gene, helping to direct the growth and division of cells. Inherited mutations in the PTEN gene have been found in approximately 80 percent of Cowden syndrome patients. These mutations prevent the PTEN protein from effectively regulating cell survival and division, which can lead to the formation of tumors.

"Our investigation into the genetics behind thyroid disease raises important details relevant to diagnosis and treatment," said Dr. Eng. "We hope to promote the earliest diagnosis and most targeted treatment possible."

The conclusions of this research, published in the Journal of Clinical Endocrinology & Metabolism, found that all six patients under age 18 had pathogenic PTEN mutations. The researchers recommend that the thyroids of children with PTEN mutation-causing CS-related disease receive increased surveillance.

Children with thyroid cancer are recommended to have testing for PTEN mutations, which could warrant surveillance for additional cancers or maladies. In contrast, alterations in the SDH and KLLN genes did not associate with thyroid cancer in children.

PTEN gene testing in the setting of genetic counseling is already routinely practiced, and has been a powerful gene-enabled diagnostic test which then personalizes clinical screening and treatment. Once SDH and KLLN findings are independently validated, the tests could be implemented as a clinical routine test as well. Importantly, these three genes belong to different cell pathways so that specific molecular-targeted treatments can be utilized depending on which gene is involved.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis