Intrinsically disordered protein responsible for inactivating BK channel

NewsGuard 100/100 Score

Tiny pores, or channels, embedded in cell membranes are critical to the healthy functioning of cells. Charged atoms, or ions, move through these channels to generate the electrical signals that allow cells to communicate with one another.

New research at Washington University School of Medicine in St. Louis unveils some of the inner workings of certain channels involved in regulating electrical signals in nerve cells, relaxing muscle cells and "tuning" hair cells in the inner ear.

In a report published April 22 in the advance online edition of the journal Nature, the scientists have shown how an unusual protein - one lacking any definable structure - plays a key role in temporarily blocking the movement of ions through these channels after a cell fires off an electrical signal. Preventing ions from moving through the channel is important because it gives cells time to recharge so that they can continue firing.

The researchers studied large potassium channels, called BK channels, which allow potassium ions to move in and out of cells. Looking at the channels gave the Washington University researchers an opportunity to see how so-called intrinsically disordered proteins can operate in cells.

They found that an intrinsically disordered protein was responsible for inactivating the BK channel. These proteins are of particular interest to scientists because they defy the long-held notion that a protein's precise 3-dimensional form determines its function.

Lingle, a professor of anesthesiology and of neurobiology, and his colleagues monitored the electrical activity of BK channels as they opened and closed. Despite the disordered nature of the unstructured protein that closes the channel, the researchers found that it nestles into a receptor inside the BK channel in a highly specific way. This lock-and-key mechanism is essential to closing, or inactivating, the channel.

"It's a two-step process, which distinguishes it from most other inactivation mechanisms that have been described," Lingle says. "My guess is that the part of the protein that binds to the potassium channel receptor may have to move through some very narrow spaces. It may be that by having a less-defined structure, the protein can navigate more easily through tight spaces and to get to the binding site."

Lingle and his colleagues are currently attempting to study how the channels behave in mouse cells to learn more about the physiological effects of BK channel behavior.

Problems in regulating BK channels are known to be involved in epilepsy, asthma and cardiovascular disease. A better understanding of the way those channels operate might help scientists think about new ways to treat these conditions and determine why the disordered protein domains that regulate these channels don't have a well-defined structure.

Source: Washington University School of Medicine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Protein intake during pregnancy affects offspring's facial features