Optogenetic Therapies for Vision workshop to be held on June 1

Published on May 24, 2012 at 5:56 AM · 1 Comment

The Foundation Fighting Blindness and Massachusetts Eye and Ear will host the Optogenetic Therapies for Vision workshop on Friday, June 1, from 8 a.m.-6 p.m., in Boston. The day-long forum will unite researchers, retinal specialists, companies interested in gene therapy, regulators, and the National Institutes of Health's (NIH) National Eye Institute (NEI), to examine the clinical path of optogenetic approaches in treating vision-robbing diseases such as macular degeneration, retinitis pigmentosa, and related conditions that affect more than 10 million Americans.

Co-chairing the workshop are Mass. Eye and Ear's Richard H. Masland, Ph.D., and the University of California, Berkeley's John Flannery, Ph.D., with top scientific minds from MIT, the University of Pennsylvania and several other renowned institutions in attendance to collaborate on further applying the latest developments in optogenetics to vision research.

A relatively new field of research, optogenetics is a process that uses gene therapy to empower cells, including those in the retina and the brain, to respond to light. Its potential is especially exciting because this method stands to benefit people with even very advanced sight loss. One optogenetic approach has already restored some vision in mice by enabling ganglion cells in highly degenerated retinas to convert light into electrical signals and send them to the brain to be interpreted as vision.

"We hope to map out how progress in optogenetic research will translate into clinical trials for patients losing vision and determine how the Foundation can invest resources to accelerate the process," said Foundation Fighting Blindness Chief Research Officer Stephen Rose, Ph.D. "Bringing together the necessary research and biotech players to advance lab studies into human trials is a major role the Foundation plays to move the needle beyond simply funding promising research."

"Now is our opportunity to accelerate progress in this promising field. The basic preclinical animal work is now done. Using optogenetics we can restore at least a limited type of vision in mice that are blind from the same types of retinal degeneration that afflict human patients. This conference gathers representatives of the best research groups in the world. Our task will be to tackle the next steps - those that move us down the road to evaluating this therapy in humans," said Dr. Masland, who is David Glendenning Cogan Professor of Ophthalmology at Harvard Medical School and Associate Chief and Director of the Howe Laboratory of Ophthalmology at Mass. Eye and Ear.

Based on workshop outcomes, the Foundation plans to issue a request for applications for optogenetics projects to fund with $1.5 million or more allocated for this type of research. In February, the Foundation announced a $250,000 grant to Ann Arbor, Mich.-based RetroSense Therapeutics for developing an optogenetic treatment that delivers the genes of green algae to the retina for restoring vision. Foundation-funded researchers in France and Switzerland are also working to develop an optogenetic method to resurrect cone cells that have stopped working, with the goal of launching a clinical trial of the treatment within three years.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
  1. sachin sachin India says:

    Thanks for updated and helping information..
    but when one can expect this research to be available for common people?

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
TSRI study shows how mutations in Tmie gene can cause deafness from birth