RUB researchers gain new insights into mechanisms of cardiovascular disease

NewsGuard 100/100 Score

Malformed desmin proteins aggregate with intact proteins of the same kind, thereby triggering skeletal and cardiac muscle diseases, the desminopathies. This was discovered by researchers from the RUB Heart and Diabetes Center NRW in Bad Oeynhausen led by PD Dr. Hendrik Milting in an interdisciplinary research project with colleagues from the universities in Karlsruhe, Würzburg and Bielefeld. They report in the Journal of Biological Chemistry.

One defective gene is enough

Desmin normally forms stabilizing filaments inside of the cells. Different mutations in the DES gene, which contains the blueprint for the protein, induce different muscle diseases. Since chromosomes are always present in pairs, each cell has two DES genes on two different chromosomes. The desminopathies break out even if only one of the DES genes is mutated. With Photo Activation Localization Microscopy (PALM), the interdisciplinary team led by Dr. Milting revealed the mechanism behind this.

Making mutated and intact proteins visible

If one DES gene is mutated and one intact, a cell produces both malformed and normal proteins. Since not only the mutant desmin proteins clump together, but also the intact exemplars are incorporated into the aggregates, one defective DES gene is enough to trigger the disease. Using the PALM microscope, the researchers attach two different fluorescent molecules to the mutant and the intact proteins. They can turn these markers on and off by laser, effectively flashing them. From the "snapshots" of the intact and the mutated proteins, the computer then calculates a joint picture on which both protein variants can be seen. PALM is a novel microscopy technique that can achieve ten times higher resolution than conventional light microscopy.

Further research projects

In the next step, the research group would like to find out how mutations in the DES gene trigger what is termed arrhythmogenic right ventricular cardiomyopathy, ARVC for short. This rare heart muscle disease is characterized by a severe defect - especially to the right ventricle - and by heart rhythm problems that can lead to sudden cardiac death due to defects in the cell-cell contacts.

Source:

Journal of Biological Chemistry

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New QR4 algorithm outperforms previous models in predicting cardiovascular disease risk