Technology creates 3-D map of stresses linked to malformed structures

Published on October 31, 2012 at 2:12 AM · No Comments

Researchers at Case Western Reserve University have found a way to create three-dimensional maps of the stress that circulating blood places on the developing heart in an animal model - a key to understanding triggers of heart defects.

The team has begun testing the technology to uncover how alcohol, drugs and other factors set off events that result in defects found in newborn humans.

Passing blood cells drag on the endothelial cells that line the growing heart, a phenomenon called shear stress, which has been linked to changes in gene expression that results in defects, most often in the valves. But precisely how they're connected is unclear.

"Alcohol exposure may affect shear stress by modulating the heart rate, but it may also involve vigor and/or timing of the contraction," said Andrew Rollins, associate professor of biomedical engineering and senior author of the new study. "Now that we have the tool, we can start to figure that out."

"We're analyzing early and late development of the heart and trying to make the connections that result in valve dysfunction," said Lindsy M. Peterson, a PhD student in Rollins' lab and lead author. Their work is published in the current online issue of the Optical Society of America's journal Biomedical Optics Express.

The pair teamed with research assistant professor Michael W. Jenkins; senior research associate Shi Gu; Lee Barwick, an undergraduate researcher now at Brigham Young University; and Michiko Watanabe, a professor of pediatrics at Case Western Reserve School of Medicine.

To look at the structure of the developing heart and blood flow, the researchers modified a technology called Doppler optical coherence tomography. Called OCT for short, they shine an infrared laser on the heart.

The reflections measured at various depths are used to create a three-dimensional image in much the same manner submariners use sonar to picture their surroundings in the deep sea. But the researchers add the dimension of time, creating movies of blood flow through the structures, needed to map shear stress.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post