Novel way to design metal organic frameworks under completely liquid-free conditions

Published on December 20, 2012 at 11:59 PM · No Comments

Researchers at Aldrich Materials Science, a strategic technology initiative of Sigma-Aldrich Corporation (NASDAQ:SIAL) have discovered an innovative way to design an important class of three-dimensional (3D) hybrid structures, Metal Organic Frameworks (MOFs), under completely liquid-free conditions. High purity MOF products prepared by the liquid-free process may be ideally suited as rare earth containing materials for sensors and detectors, electronic or magnetic materials. The discovery also extends liquid-free preparation techniques to a large new class of 3D-structured materials and is expected to lead to new products with unique properties and suitability for applications heretofore unknown.

A report of the Aldrich-developed procedure was recently published in the prominent peer-reviewed journal, Chemical Communications. Drs. Niraj Singh, Meenakshi Hardi and Viktor Balema from the Aldrich Hard Materials Center of Excellence demonstrated the synthesis of Y-MOF (MIL-78) using a room-temperature ball-milling process in the absence of a solvent or liquid grinding additive. In the process, yttrium hydride was ball-milled with solid high-melting trimesic acid to form Y-MOF (MIL-78). Gaseous hydrogen was the only by-product observed in the process. The liquid-free synthesis process yields MOF products of exceptional purity by preventing contamination from solvents and liquid residues.

Metal Organic Frameworks (MOFs) are an attractive class of highly ordered materials built by combining multi-functional organic molecules (linkers) and metal ions into a 3D network. The well-defined, highly-ordered, and readily-controlled structure of MOFs can be exploited in a diverse range of applications including gas storage, separations, catalysis, sensors and drug delivery. The presence of modifiable organic linkers in the MOF structure enables tunability of function and customization of end use.

Current routes to MOF materials typically rely on solution-based processes in which the organic linker and the metal source - a metal salt, carbonate or oxide - are partially or fully dissolved in an appropriate solvent and reacted. The reaction can occur in a tightly closed vessel at high temperature or by subjecting the solution to microwaves, ultrasound or electrochemical treatment. Metal-organic framework materials can also be prepared by milling solid-phase metal derivatives and solid-phase organic linkers in the presence of a liquid, which can be included as an additive with the initial solid-phase reaction mixture or generated in situ as a byproduct during the milling process. Although often asserted to be "solid-state," such processes necessarily involve liquid components, which can act as liquid micro-reactors that control the reaction process and promote the formation of MOFs by the conventional solution-based mechanism.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post