Scientists define structure of α-catenin protein

Published on January 9, 2013 at 12:48 AM · No Comments

Scientists know that cells in all higher organisms cells need to bind to each other for the development, architecture, maintenance and function of tissues. Mysteries have remained, however, about exactly how cells manage this feat.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have now solved part of this puzzle by defining the structure of a protein known as α-catenin, which is essential to this process.

The work was published online ahead of print on January 6, 2012, by the journal Nature Structural & Molecular Biology.

Chain, Chain, Chain

Our cells bind to each other using specialized cell surface adhesion complexes called adherens junctions, which direct the formation of tight, Velcro-like contacts among cells.

Adherens junctions are made up of three types of proteins-cadherin, α-catenin and β-catenin. First, cadherin receptors, which span the cell membrane, direct the binding of cells to each other using domains that project outside the cell. Second, their tail domains, found on the inside of the cell, bind to the protein β-catenin, which, in turn, is bound to α-catenin.

The term catenin is derived from the Latin word for chain, catena, and these three proteins literally make a chain. This complex is then stabilized when the end of the chain, α-catenin, attaches to the molecular framework of the cell, the cytoskeleton. Without this, link cells would simply be amorphous piles of goo. Furthermore, alterations of cadherins, β-catenin and/or α-catenin can lead to marked changes in cell signaling, growth and migration-which can result in abnormalities and cancer.

Confronting a Paradox

Exactly how α-catenin provides links to the cytoskeleton and to the cadherin-β-catenin complex, however, has long puzzled scientists.

Scientists have known that α-catenin forms links to the cytoskeleton by binding to a protein called F-actin (the "F" stands for filament), which is found in species ranging from yeast to humans. The paradox for scientists has been that, despite being able to bind to F-actin on its own, when bound to α-catenin α-catenin cannot bind to F-actin. That is, the binding of α-catenin to F-actin and to β-catenin are, in the test tube, mutually exclusive. So how does α-catenin bind to F-actin versus β-catenin and how is the final link in the chain stabilized in cells?

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post