Advancement in re-engineering photosynthesis can transform plants into bio-factories

NewsGuard 100/100 Score

Scientists are reporting an advance in re-engineering photosynthesis to transform plants into bio-factories that manufacture high-value ingredients for medicines, fabrics, fuels and other products. They report on the research in the journal ACS Synthetic Biology.

Poul Erik Jensen and colleagues explain that photosynthesis does more than transform carbon dioxide and water into sugar and oxygen and generate energy.

That process also produces a wealth of natural chemical compounds, many of which have potential uses in medicines and other commercial products. However, evolution has compartmentalized those functions into two separate areas of plant cells. Chloroplasts, the packets of chlorophyll that make plants green, generate energy and produce sugar and oxygen. Another structure, the endoplasmic reticulum, produces a wide range of natural chemicals.

Their report describes breaking that evolutionary compartmentalization by relocating an entire metabolic pathway needed for production of natural bioactive chemicals to the chloroplast. "This opens the avenue for light-driven synthesis of a vast array of other natural chemicals in the chloroplast," they say, citing key natural chemicals that would be ingredients in medications.

Source: American Chemical Society

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unraveling the complexities of muscle repair in diabetes: A call for targeted research and therapies