Blood stem cell self-renewal dependent on surroundings

NewsGuard 100/100 Score

Stem cells have two important capabilities: they can develop into a wide range of cell types and simultaneously renew themselves, creating fresh stem cells. Using a model of the blood forming (hematopoietic) system, researchers at the Technical University of Munich (TUM) have now been able to precisely determine, which signaling pathways play an essential role in the self-renewal of blood stem cells. A particularly decisive role in this process is the interactive communication with surrounding tissue cells in the bone marrow.

Our blood is generated by blood-forming (hematopoietic) stem cells (HSCs) in the bone marrow. In conjunction with bone marrow tissue cells, these HSCs form a microenvironment known as a niche. As long as the body is healthy, the HSCs remain in “standby” mode. But if an accident leads to substantial blood loss, for instance, or the defense against a pathogen requires more blood cells in the course of an infection, the stem cells are activated.

In response, the entire blood cell formation system switches from standby into a state of alert. The activated stem cells generate new blood cells of every type to counteract the blood loss or combat the pathogen. At the same time, self-renewal keeps the stem cell pool replenished.

This switch is accompanied by a complex communication process between the stem cells and tissue cells – an area that had not previously been examined in any depth. “In our study, we set out to establish which tissue signals are important to stem cell maintenance and functionality, and which HSC signals influence the microenvironment,” explains Prof. Robert Oostendorp from TUM’s university hospital, Klinikum rechts der Isar, where he works at the III. Medizinische Klinik led by Prof. Christian Peschel. Together with team members Dr. Rouzanna Istvánffy and Dr. Baiba Vilne, Oostendorp used mixed cultures of tissue and stem cells to investigate how the two cell types interact.

Tissue cells trigger stem cell renewal

To unravel the complex signaling pathway map, the scientists used their own findings from the analysis of factors regulated up or down in the interplay between tissue and stem cells, linking them with the signaling pathways described in existing literature. They then consolidated this information within a bioinformatics computer model. To achieve this, the researchers collaborated with a group led by Prof. Hans-Werner Mewes, TUM’s Professor of Genome-Oriented Bioinformatics. Finally, the team conducted extensive cell experiments to confirm the computer-generated signaling pathway model.

“The outcome was very interesting indeed: the entire system operates in a feedback loop,” reveals Oostendorp. Summing up the results, he continues: “In alert mode, the stem cells first influence the behavior of the tissue cells – which, in turn, impact on the stem cells, triggering the self-renewal step.”

Important ramifications also for leukemia treatment

The team’s findings paint a clear picture: in alert mode, the stem cells emit signaling substances, which in turn induce tissue cells to release the connective tissue growth factor (CTGF) messenger. This is essential to maintain the stem cells through self-renewal. In the absence of CTGF, the stem cells age and cannot replenish.

“Our findings could prove significant in treating leukemia. In this condition, the stem cells are hyperactive and their division is unchecked,” describes Oostendorp. “Leukemic blood cells are in a constant state of alert, so we would expect a similar interplay with the tissue cells.” To date, however, the focus here has been limited to stem cells as the actual source of the defect. “Given what we know now about feedback loops, it would be important to integrate the surrounding cells in therapeutic approaches too, since they exert a strong influence on stem cell division,” the scientist confirms.

Publication

R. Istvánffy, B. Vilne, C. Schreck, F. Ruf, C. Pagel, S. Grziwok, L. Henkel, O. Prazeres da Costa, J. Berndt, V. Stümpflen, K. S. Götze, M. Schiemann, C. Peschel, H.-W. Mewes, R.A.J. Oostendorp, Stroma-derived connective tissue growth factor (CTGF) maintains cell cycle progression and repopulation activity of hematopoietic stem cells in vitro, Stem Cell Reports, October 29, 2015.
DOI: 10.1016/j.stemcr.2015.09.018
http://www.cell.com/stem-cell-reports/abstract/S2213-6711%2815%2900280-5

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 38,500 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Source: www.tum.de

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Triple-negative breast cancer patients with high immune cell levels have lower relapse risk after surgery