New class of monocyte cells with strange morphology may cause fibrosis

NewsGuard 100/100 Score

Scientists at the Immunology Frontier Research Center (IFReC) at Osaka University, Japan, report a new group of monocytes they call SatM. Studies in mice show that SatM may be responsible for causing fibrosis and creates a new drug target for an ailment that has little effective therapies.

Fibrosis is a form of scarring that could if uncontrolled cause deleterious thickening of tissues. Although it is known that fibrosis is caused by an activated immune system, which specific cells are responsible continuous to elude researchers.

Scientists at IFReC may have found this subgroup, as they report in Nature a class of monocyte cells with strange morphology. "The cells had a bi-lobed segmented nuclear shape and many cytoplasmic granules. We therefore called them 'Segregated nucleus atypical monocytes (SatM)'", said IFReC Professor Shizuo Akira.

To identify this subgroup, the researchers looked at immune cell subpopulations that predominantly appeared in fibrosis. "These cells were regulated by  C/EBPβ," observed Akira.

Detailed examination of immune cells showed that the C/EBPβ mutant mice, unlike normal mice, produced no SatM, whereas no other observed immune cell population was changed. The mice were also significantly more resistant to fibrosis. On the other hand, when the mutant mice were exposed to SatM, their susceptibility to fibrosis rose.

Although Dr.Akira, Dr. Satoh and his colleagues describe SatM as a subset of monocytes, SatM showed characteristics that suggested they were hybrids of different immune cells. According to Akira, gene analysis found SatM "showed granulocyte markers, but SatM are definitely not granulocytes. These cell type is one of monocyte."

Additional study found the progenitor cells responsible for producing SatM. Adoptive transfer of these progenitors into mutant mice unable to produce SatM resulted in a SatM population, and C/EBPβ was found to be essential for maintaining the progenitors.

The ability to isolate cells specifically related to fibrosis gives hope for new therapies.

"Decades of research have shown that immune cells are extremely diverse," said Akira. "Clear definitions of the subpopulations are essential for properly diagnosing and treating diseases. Our discovery of SatM should improve therapeutic strategies against fibrosis."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Exploring the versatile roles of tissue macrophages beyond immune defense