New DNA coating gets better at protecting skin with more exposure to UV light

NewsGuard 100/100 Score

Why use regular sunscreen when you can apply a DNA film to your skin? Researchers at Binghamton University, State University of New York have developed a coating made out of DNA that gets better at protecting skin from ultraviolet light the more you expose it to the sun, and it also keeps your skin hydrated.

"Ultraviolet (UV) light can actually damage DNA, and that's not good for the skin," said Guy German, assistant professor of biomedical engineering at Binghamton University. "We thought, let's flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin."

German and a team of researchers developed thin and optically transparent crystalline DNA films and irradiated them with UV light. They found that the more they exposed the film to UV light, the better the film got at absorbing it.

"If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen," said German.

As an added bonus, the DNA coatings are also hygroscopic, meaning that skin coated with the DNA films can store and hold water much more than uncoated skin. When applied to human skin, they are capable of slowing water evaporation and keeping the tissue hydrated for extended periods of time.

German intends to see next if these materials might be good as a wound covering for hostile environments where 1) you want to be able to see the wound healing without removing the dressing, 2) you want to protect the wound from the sun and 3) you want to keep the wound in a moist environment, known to promote faster wound healing rates.

"Not only do we think this might have applications for sunscreen and moisturizers directly, but if it's optically transparent and prevents tissue damage from the sun and it's good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments," he said.

Undergraduate students at Binghamton University contributed to this research.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Baylor study reveals role of newly inherited DNA variants in recessive diseases