New study explores link between traffic-related air pollution and childhood anxiety

NewsGuard 100/100 Score

Exposure to air pollution is a well-established global health problem associated with complications for people with asthma and respiratory disease, as well as heart conditions and an increased risk of stroke, and according to the World Health Organization, is responsible for millions of deaths annually. Emerging evidence now suggests that air pollution may also impact the metabolic and neurological development of children.

A new study from researchers at the University of Cincinnati and Cincinnati Children's Hospital Medical Center looks at the correlation between exposure to traffic-related air pollution (TRAP) and childhood anxiety, by looking at the altered neurochemistry in pre-adolescents.

Recent evidence suggests the central nervous system is particularly vulnerable to air pollution, suggesting a role in the etiology of mental disorders, like anxiety or depression.

This is the first study to use neuroimaging to evaluate TRAP exposure, metabolite dysregulation in the brain and generalized anxiety symptoms among otherwise healthy children."

Kelly Brunst, PhD, assistant professor in the Department of Environmental Health at the College of Medicine, and lead author on the study

The study was published by the journal Environmental Research and is available online.

The researchers evaluated imaging of 145 children at an average age of 12 years, looking specifically at the levels of myo-inositol found in the brain through a specialized MRI technique, magnetic resonance spectroscopy. Myo-inositol is a naturally-occurring metabolite mainly found in specialized brain cells known as glial cells, that assists with maintaining cell volume and fluid balance in the brain, and serves as a regulator for hormones and insulin in the body. Increases in myo-inositol levels correlate with an increased population of glial cells, which often occurs in states of inflammation.

They found that, among those exposed to higher levels of recent TRAP, there were significant increases of myo-inositol in the brain, compared to those with lower TRAP exposure. They also observed increases in myo-inositol to be associated with more generalized anxiety symptoms. "In the higher, recent exposure group, we saw a 12% increase in anxiety symptoms," says Brunst.

Brunst noted however, that the observed increase in reported generalized anxiety symptoms in this cohort of typically developing children was relatively small and are not likely to result in a clinical diagnosis of an anxiety disorder. "However, I think it can speak to a bigger impact on population health ... that increased exposure to air pollution can trigger the brain's inflammatory response, as evident by the increases we saw in myo-inositol," says Brunst. "This may indicate that certain populations are at an increased risk for poorer anxiety outcomes."

Source:

University of Cincinnati Academic Health Center

Journal reference:

Brunst, K. et al. (2019) Myo-inositol mediates the effects of traffic-related air pollution on generalized anxiety symptoms at age 12 years. Environmental Research. doi.org/10.1016/j.envres.2019.05.009.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Australian Gen Z people have major concerns about climate change, research shows