Research could aid in development of antiperspirants, treatment of sweat gland disorders

Solving sweat-related concerns that occur in daily life, such as hyperhidrosis and sweat smell, can improve people's quality of life. Now, researchers from Osaka University, in collaboration with Mandom Corporation, have succeeded in generating Immortalized human Eccrine sweat gland Myoepithelial cells (iEM cells). Their findings could help develop next-generation antiperspirants and promote research on sweat dysfunction and sweat gland regeneration.

To control sweating, the researchers had to understand the properties of the cells that make up sweat glands and regulate their function. Myoepithelial cells found in sweat glands are involved in the contraction of the glands and function as stem cells to maintain the homeostasis of the glands, playing an important role in human sweating.

Cultured cells are useful for elucidating the function of human eccrine sweat gland myoepithelial cells; however, up until now, no human eccrine sweat gland cell line has retained the characteristics of myoepithelial cells.

In 2016, the research team established a method enabling human eccrine sweat gland cells to maintain the characteristics of myoepithelial cells for a short time by culturing human eccrine sweat gland myoepithelial cells under conditions similar to those in vivo.

We focused on the fact that human eccrine sweat gland myoepithelial cells cultured in an environment similar to that in vivo form a spherical structure covered with myoepithelial cells. Direct introduction of an immortalizing gene into the spherical structure enabled us to efficiently immortalize human eccrine sweat gland myoepithelial cells, achieving a breakthrough in generating iEM cells."

Fumihiro Okada, study lead

Human eccrine sweat gland myoepithelial cells could previously be subcultured for only around three generations. iEM cells, on the other hand, can be subcultured for more than ten generations. Moreover, iEM cells express α-smooth muscle actin (α-SMA), a gene that supports the function of human myoepithelial cells, retaining their properties (Fig.2).

Now, the material transfer agreement for iEM cells allows the cells to be transferred through Applied Biological Material Inc. to research institutes in many countries worldwide. "We expect that iEM cells, as a new test system for sweat glands, will aid in the development of antiperspirants, treatment of sweat gland disorders, and regeneration of sweat gland tissue."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gene therapy trial: restored hearing in children with hereditary deafness