Study pinpoints a potential pathway for treating epileptic seizures in patients with autism

NewsGuard 100/100 Score

Autism affects about 2% of children in the United States, and about 30% of these children have seizures. Recent large-scale genetic studies revealed that genetic variants in a sodium channel, called voltage-gated sodium channel Nav1.2, is a leading cause of autism. Overactive sodium channels in the neuron cause seizures. Doctors often treat seizures by giving the patient a medication meant to close the sodium channels, reducing the flow of sodium through axons.

For many patients such treatment works, but in some cases – up to 20 or 30% – the treatment doesn't work. These children have "loss-of-function" variants in Nav1.2, which is expected to reduce the sodium channel activity as "anti-seizures". Thus, how the deficiency in sodium channel Nav1.2 leads to seizures is a major mystery in the field that puzzles physicians and scientists.

Yang Yang, an assistant professor of medicinal chemistry and molecular pharmacology at Purdue University, and his team, including first-author of the paper post-doctoral researcher Jingliang Zhang, tackled the issue. They discovered that in Nav1.2 deficient neurons, the expressions of many potassium channels are surprisingly reduced. The Nav1.2 deficiency itself doesn't cause seizures; the issue arises when the potassium channels over-compensate for the sodium channels' deficiency by shutting down too many potassium channels, making the neuron hyperexcitable, which causes seizures.

In such cases, treating the sodium channel clearly does not work. Yang and his team suggest that developing medicines to open the potassium channels would help control seizures in these patients. Notably, researchers from the University of California, San Francisco led by Kevin Bender's research group made a similar observation independently. Yang and Bender's papers were published back-to-back in the same issue of Cell Reports.

We're looking at genetic makeup, so doctors can proscribe a drug and gene therapy based on genes identified – personalized medicines. Our research points toward a direction for future research, maybe future treatments. We are peacetime warriors, fighting humanity's biggest enemy: disease. There are kids dying because of these conditions. Our goal is to help them, to help their parents and their families. This kind of basic research is a vital part of finding new drugs."

Yang Yang, assistant professor of medicinal chemistry and molecular pharmacology at Purdue University

Source:
Journal reference:

Zhang, J., et al. (2021) Severe deficiency of the voltage-gated sodium channel NaV1.2 elevates neuronal excitability in adult mice. Cell Reports. doi.org/10.1016/j.celrep.2021.109495.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Bridging science and practice: FSU experts support autism awareness