New insights into biology of bread wheat genome

NewsGuard 100/100 Score

Bread wheat (Triticum aestivum L.) is the most widely cultivated cereal crop in the world and provides 20 percent of the food calories consumed by humans. A polyploid species, hexaploid bread wheat contains six duplicated copies of its genome and is more than five times larger than the human genome. This makes genome research in wheat particularly difficult.

Dr. Klaus Mayer, Head of the Research Unit Plant Genome and Systems Biology at HMGU, in collaboration with his colleagues Matthias Pfeifer, Dr. Karl Kugler and Manuel Spannagl, succeeded in gaining insights into complex gene-regulatory interactions: for example, how genes can be transcribed at different stages of grain development. "Our studies help us to understand how a polyploid genome is regulated and orchestrated. It revealed that for different purposes different sub-genomes are favored and used. This will have impact on future breeding, agricultural cultivation and industrial properties of bread wheat," Mayer says.

Understanding as a basis for breeding

The highly specific intra- and inter-chromosomal activities of bread wheat enable it to adapt to the environment in many different possible ways. "The better we understand the organization, function and evolution of the large polyploid genome, the more easily we can identify the genes that are important for breeding," explains Mayer. "This will make it possible to breed the most suitable plant for different locations."

Long evolutionary history - many opportunities for development

The scientists can now trace a common ancestor of the wheat types "A" and "B" back to about seven million years. From this another third type ("D") evolved one to two million years later. "We have discovered that the present-day bread wheat genome is the result from a series of polyploidisation and hybridization events during the evolution of wheat. That is why we must understand it as a multilevel phylogenetic mosaic," explains Mayer.

"The newly gained insights into the biology of the bread wheat genome will enable us to isolate genes faster and speed up the development of genetic markers for breeding. These are the building blocks that will enable us to successfully meet the challenge of satisfying the world's growing demand for food at a time of stagnating yields, plant diseases and climate change," Mayer says.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Could dried fruits be the key to reducing osteoarthritis risk?