Nanoparticle could allow diagnosis and treatment in one visit

Published on December 15, 2009 at 2:49 AM · No Comments

Researchers at Rice University and Baylor College of Medicine (BCM) have created a single nanoparticle that can be tracked in real time with MRI as it homes in on cancer cells, tags them with a fluorescent dye and kills them with heat. The all-in-one particle is one of the first examples from a growing field called "theranostics" that develops technologies physicians can use to diagnose and treat diseases in a single procedure.

The research is available online in the journal Advanced Functional Materials. Tests so far involve laboratory cell cultures, but the researchers said MRI tracking will be particularly advantageous as they move toward tests in animals and people.

"Some of the most essential questions in nanomedicine today are about biodistribution -- where particles go inside the body and how they get there," said study co-author Naomi Halas. "Noninvasive tests for biodistribution will be enormously useful on the path to FDA approval, and this technique -- adding MRI functionality to the particle you're testing and using for therapy -- is a very promising way of doing this."

Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering, is a pioneer in nanomedicine. The all-in-one particles are based on nanoshells -- particles she invented in the 1990s that are currently in human clinical trials for cancer treatment. Nanoshells harvest laser light that would normally pass harmlessly through the body and convert it into tumor-killing heat.

In designing the new particle, Halas partnered with Amit Joshi, assistant professor in BCM's Division of Molecular Imaging, to modify nanoshells by adding a fluorescent dye that glows when struck by near-infrared (NIR) light. NIR light is invisible and harmless, so NIR imaging could provide doctors with a means of diagnosing diseases without surgery.

In studying ways to attach the dye, Halas' graduate student, Rizia Bardhan, found that dye molecules emitted 40-50 times more light if a tiny gap was left between them and the surface of the nanoshell. The gap was just a few nanometers wide, but rather than waste the space, Bardhan inserted a layer of iron oxide that would be detectable with MRI. The researchers also attached an antibody that lets the particles bind to the surface of breast and ovarian cancer cells.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | हिन्दी | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post